




Abstract

Because logged data has become ubiquitous in wide-range applications and since online
exploration may be sensitive, counterfactual methods have gained significant attention in the
recent decade (Bottou et al., 2013). Such data come in the form of an observational dataset
where partial feedback information is associated to context covariates and actions taken by a
logging decision policy. The aim of counterfactual policy methods is then to learn a policy
that improves upon that logging policy based on the observational data solely. While many
applications require a discrete action setting, less attention has been given to continuous
action spaces that are however widespread in online auction problems (Nedelec et al., 2022).
In that sense, developing algorithms with guarantees that work well in these practical settings,
as well as enlarging benchmark datasets represents an important research direction that
has been a focus of this thesis. We introduce subsequently a method for continuous action
policies along with a new CoCoA benchmark dataset. Moreover, we investigate the use of
optimization approaches related to the counterfactual risk minimization learning objective
function and propose a novel estimator that is more amenable to gradient based optimization.

Likewise, counterfactual learning methods typically use inverse propensity scoring
estimators (Horvitz and Thompson, 1952) that are prone to variance issues (Owen, 2013). The
latter is even more seen in cases where the past decisions (in the collected data) underexplored
the action space. As such, an offline analysis may not suffice to undertake statistically
plausible decisions; collecting additional data to increase the sample size may be necessary.
In that sense, sequential designs of adaptively collected data should allow to improve the
performance of counterfactual policy learning in terms of convergence guarantees and in
practical settings. We investigate this direction in this thesis by proposing a novel estimator
with improved variance-dependent convergence guarantees which in turn allow to obtain fast
rates under an assumption that is similar to Holderian error bounds used in restart strategies
for accelerated optimization (d’Aspremont et al., 2021).

Conversely, when online exploration is possible, a rich literature has been built (Latti-
more and Szepesvári, 2020) to design effective online policies in contextual bandits. In that
case, the Optimistim in the Face of Uncertainty Learning (OFUL) principle (Abbasi-yadkori
et al., 2011) has been instrumental in obtaining algorithms with sublinear regret rates and
especially practical performances. While seminal methods use linear assumptions on the
form of the reward (Li et al., 2010; Chu et al., 2011), nonlinear embeddings of kernel methods
(Shawe-Taylor and Cristianini, 2004) provide richer representations of the data that allow for
controlled regret guarantees and improved performances in applications. However, such
kernel methods suffer from scalability issues as they become computationally intensive
when the number of decision steps increases. As such, we investigate in this thesis the
use of kernel approximation methods (Smola and Schölkopf, 2000; Williams and Seeger,
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2001) in the contextual bandit task to derive an efficient implementation of the Kernel UCB
method (Valko et al., 2013). We analyze the regret and explicit in which kernel approximation
regimes we manage to restore the original regret rate while obtaining faster computations.

Eventually, in sequential learning (Bubeck, 2011), an agent can be called to choose between
arms in a set of alternatives and thereof develop a randomized strategy in adversarial settings
(Cesa-Bianchi and Lugosi, 2006). However, in some applications the learner has to choose
between a large number of alternatives of which many possess inherent similarities which
may be implied by closely correlated losses. In that case, a naive learning agent may suffer
unnecessary regret and conversely, an agent that would benefit from side information on a
similarity structure may obtain improved performances. This thesis brings contributions
with regards to a class of adversarial multi-armed bandit problems with novel algorithms on
learning with expert advice and a nested exponential weights algorithms that performs a
layered exploration of the learner nested set of alternatives.



Résumé

Étant donné que les données "loggées" sont devenues omniprésentes dans de nombreuses
applications et que l’exploration en ligne peut être sensible, les méthodes contrefactuelles ont
suscité un intérêt significatif au cours des dernières années (Bottou et al., 2013). Ces données
se trouvent sous la forme d’un jeu de données observationnelles où des informations partielles
de renforcement sont associées à des covariables contextuelles et aux actions prises par une
politique de décision de "logging". Le but de ces méthodes d’apprentissage contrefactuel
de politique est dès lors d’apprendre une politique qui améliore la politique initiale en
utilisant seulement ces données observationnelles. Bien que de nombreuses applications
nécessitent un espace d’action discret, un intérêt moindre a été accordé aux méthodes avec
espaces d’action continus qui sont cependant présents dans des problèmes d’enchères en ligne
(Nedelec et al., 2022). Aussi, le développement d’algorithmes avec des garanties théoriques
qui fonctionnent dans des problèmes pratiques, ainsi que l’élargissement des données de
référence en source ouverte représente une direction de recherche importante qui a été un
objet de cette thèse. Nous présentons par la suite une méthode pour les politiques d’action
continues ainsi qu’un nouvel ensemble de données de référence, le jeu de données CoCoA. De
plus, nous étudions l’utilisation de méthodes d’optimisation liées à la nature de la fonction
objective d’apprentissage en minimisation de risque contrefactuel et proposons un nouvel
estimateur qui est plus adapté à l’optimisation basée sur des gradients.

Par ailleurs, les méthodes d’apprentissage contrefactuel utilisent généralement des
estimateurs de pondération de propension inverse (Horvitz and Thompson, 1952) qui sont
sujets à des problèmes de variance (Owen, 2013). Ce dernier est encore plus prononcé dans les
cas où les décisions passées (dans les données collectées) ont sous-exploré l’espace d’action.
Par conséquent, une analyse hors ligne peut ne pas suffire pour prendre des décisions
statistiquement plausibles ; il peut être nécessaire de collecter des données supplémentaires
pour augmenter la taille de l’échantillon. Ainsi, les conceptions séquentielles de collection
de données de manière adaptative devraient permettre d’améliorer les performances de
l’apprentissage contrefactuel de politique en termes de garanties de convergence mais
également en pratique. Nous explorons cette direction dans cette thèse en proposant un
nouvel estimateur avec des garanties de convergence améliorées qui permettent à leur tour
d’obtenir des taux rapides sous une hypothèse similaire à celle des bornes d’erreur de Holder
dans les stratégies de redémarrage dans les méthodes d’optimisation accélérée (d’Aspremont
et al., 2021).

Inversement, lorsque l’exploration en ligne est possible, une littérature abondante a été
élaborée (Lattimore and Szepesvári, 2020) pour concevoir des politiques en ligne efficaces
dans les problèmes de bandits contextuels. Dans ce cas, le principe d’Optimisme Face à
l’Incertitude de l’Apprentissage (Abbasi-yadkori et al., 2011) a été déterminant pour obtenir
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des algorithmes avec des taux de regret sous-linéaires et des performances particulièrement
satisfaisantes dans des problèmes pratiques. Alors que des premières méthodes pour ce
problème requièrent des hypothèses de linéarité sur la forme de la fonction de renforcement
(Li et al., 2010; Chu et al., 2011), les representations non linéaires des méthodes à noyau
(Shawe-Taylor and Cristianini, 2004) permettent d’obtenir des représentations de données
plus riches qui à leur tour fournissent des garanties de regret et des performances améliorées
dans un grand nombre d’applications. Cependant, de telles méthodes à noyau souffrent de
problèmes de scalabilité car elles deviennent couteuses en termes de ressources de calcul
lorsque le nombre d’étapes de décision augmente. Nous étudions donc dans cette thèse
l’utilisation de méthodes d’approximation à noyau (Smola and Schölkopf, 2000; Williams
and Seeger, 2001) dans ce problème de bandit contextuel pour proposer une implémentation
efficace de la méthode UCB à noyau (Valko et al., 2013). Nous analysons le regret et explicitons
les régimes dans lesquels l’approximation des méthodes à noyau permet de restaurer le taux
de regret original tout en obtenant des calculs plus rapides.

Enfin, en apprentissage séquentiel (Bubeck, 2011), un agent peut être appelé à choisir
entre des actions dans un ensemble d’alternatives et développer une stratégie aléatoire
dans des environnements adversariaux (Cesa-Bianchi and Lugosi, 2006). Cependant, dans
certaines applications, l’apprenant doit choisir entre un grand nombre d’alternatives dont
beaucoup présentent des similarités inhérentes qui peuvent être induites par des coûts
étroitement corrélées. Dans ce cas, un agent d’apprentissage naïf peut souffrir d’un regret
inutile et inversement, un agent qui bénéficierait d’informations annexes sur une structure
de similarité devrait obtenir des performances améliorées. Cette thèse apporte des contri-
butions sur des classes de problèmes de bandits multi-bras adversariaux avec un nouvel
algorithme d’apprentissage avec conseils d’experts et un algorithme de poids exponentiel
emboîté qui effectue une exploration en couches de l’ensemble emboîté d’alternatives de
l’apprenant.
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Nomenclature

Abbreviations
We provide below a table of some of the most useful abbreviations in this manuscript.

Abbreviation Definition

CRM Counterfactual Risk Minimization
SCRM Sequential Counterfactual Risk Minimization
IPS Inverse Propensity Scoring
SNIPS Self-Normalized Inverse Propensity Scoring
DM Direct Method
DR Doubly Robust
UCB Upper Confidence Bound Algorithm
FTRL Follow the Regularized Leader
OMD Online Mirror Descent
DA Dual Averaging

Notations
We define here the most crucial notations that are used throughout the manuscript. Other

chapter-specific notations are defined along the text and recalled in the appendices when
needed in analysis sections.

Below are some notations related to the learning setting:
– L is an expected risk measure
– L̂ is an estimator of that quantity
– λ is a regularization parameter
– n is a sample size
– θ is a parameter and the parameter space is Θ
– θ∗ is an unknown optimal parameter
– δ is a confidence level
– Ω is a regularization function
– L is an objective function to be optimized
– d is the dimension of an input space

Below are some notations related to the bandit setting:
– A is the action set (set of alternatives)
– k = |A| is the size of the action set when it is finite
– at ∈ A is an action played at a step t
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– X is the context space
– xt ∈ X is a context sampled at a step t
– yt ∈ Y is a loss (or a target) induced at time t
– rt is a reward at time t
– Π is a policy set
– π ∈ Π is a policy that can be stochastic or deterministic

Below are some generic notations:
– [n] := {1, . . . , n}
– ≲ denotes an approximate inequality up to logarithmic multiplicative or additive terms
– For random variables x ∼ PX , a ∼ πθ(·|x) and y ∼ PY(·|x, a), we write the expectation

Ex,θ,y[·] = Ex∼PX ,a∼πθ(·|x),y∼PY (·|x,a)[·] and do the same for the variance Varx,θ,y.

Below are generic notations related to RKHS:
– S is the input space
– K : S × S → R is a bounded positive definite Kernel
– κ > 0 is an upper-bound on the kernel κ2 ≥ sups∈S K(s, s).
– H is the reproducing kernel Hilbert space associated to K
– ϕ : S → H is the feature map such that K(s, s′) = ⟨ϕ(s), ϕ(s′)⟩H for any s, s′ ∈ S × S
– ⟨φ,φ′⟩H := φ⊤φ′ denotes the inner product for any φ,φ′ ∈ H
– ∥ · ∥H denotes the norm associated toH. It is the one induced by the inner product, i.e.,
∥φ∥2 = ⟨φ,φ⟩

– ∥ · ∥V denotes for any symmetric positive semi-definite operator V : H → H the norm
such that ∥φ∥V = ∥V 1/2φ∥H for all φ ∈ H

– L ≼ L′ means that L− L′ is positive semi-definite for two operators L,L′ onH
– φ⊗ φ′ : H → H is the tensor product of φ and φ′ ∈ H
– Z ⊂

{
s1, . . . , sn

}
is a dictionary of elements of the observation set Sn =

{
s1, . . . , sn

}
– m = |Z| is the size of this dictionary

Below are notations related to the sequential setting. Here, t ∈ [T ] denotes the index of
the round:

– T is the horizon or number of rounds
– st := (xt, at) ∈ X ×A is a state at round t
– St := {s1, . . . , st} denotes the history
– ε1, . . . , εT are independent centered sub-Gaussian noise
– Ft := σ(ε1, . . . , εt) is the natural filtration with respect to (εi)i≥1

– φt := ϕ(xt, at) ∈ H for ϕ : X ×A → H
Below are notations related to the online optimization setting.

– u ∈ ∆(A) mixed strategy on the alternative set
– P is a choice function that maps score vectors y ∈ RA to mixed strategies via the relation
u = P(y)

– γ is the learning rate for the choice map
– h is an entropy function
– H is the depth of the entropy function



1
Introduction

By combining statistical methods with machine learning techniques, researchers have
unlocked in the recent decades dramatical insights and innovative solutions in fields such as
marketing, healthcare, social sciences and finance. Such methods have been instrumental in
driving many recent technological advances in statistical decision making where the goal is to
understand dependencies on random variables and make decisions based on observational
data. To do so, given past outcomes of experiments, the core complexity of such statistical
learning methods lies in inferring an underlying probabilistic structure from finite samples of
arbitrary sizes.

Yet, even if the full probabilistic model were known, an additional difficulty raise
because the knowledge of observational distributions does not determine an underlying causal
structure, in the sense that correlation does not imply causation. While in the recent decade,
tremendous and remarkable empirical successes have been achieved on difficult tasks with
complex data, a growing interest has been shifting to understanding causal dependencies and
properties for tasks in precision medicine, drug dosage, online advertising and personalized
recommendations. As a matter of fact, in decision problems where treatments or actions are
taken through a policy, an increased attention has been given to counterfactual reasoning. The
latter aims at providing a probabilistic answer to a "what would have happened if" question that
occurs in many problems with partial feedback or missing information and for which an a
posteriori analysis of past decisions is desirable. In that case, a decision making system can
be improved without being deployed in a real-world experiment.

Subsequently, leveraging large amounts of data, counterfactual learning methods have
been developed for learning problems. Notably, log data is an extremely widespread type
of data that can be easily collected from a variety of systems (such as search engines, ad
placement, and recommendation systems) at a low cost. Typically, the logs of such decision
systems contain information on user input (such as user features), system predictions (such
as a recommended list of news articles), and feedback (such as the number of articles the user
read). However, this feedback only provides partial information, known as "bandit feedback,"
which is limited to the specific prediction made by the system. The feedback for all the other
possible predictions is typically unknown. This fundamental difference in feedback makes
learning from log data distinct from supervised learning, where full-information feedback is
available through "correct" predictions and a loss function.

1
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The latter methods are actually offline variants for a sequential learning setting, where
data sets are not immediately available to learn a model, but rather observed sequentially as a
data flow. In that so called bandit setting, a decision maker is required to take actions one after
another based on past observations. Once the decision is made, the decision maker suffers a
loss (or gains a reward, depending on the problem) with partial feedback. Every decision
carries the potential for a different loss, which is unknown to the participant beforehand. To
analyse such settings, under specific assumptions on the distribution of contexts and losses, it
is possible to derive guarantees using statistical learning theory. However, in such a setting,
it is worth noting that the environment may be so complex that it is not feasible to select a
comprehensive model and apply classical statistical theory and optimization. Specifically, an
adversary may arbitrarily choose the losses at each round which necessitates more elaborate
decision making.

This thesis follows these main directions and focuses on exploring theoretical and practical
questions related to statistical methods for counterfactual policy learning and sequential
learning for problems motivated in Section 1.1. These contributions are further described in
Section 1.2. The rest of this introduction aims at providing an overview of essential concepts
and settings that arise in the contributions of this thesis. Specifically, Section 1.3 introduces
the fundamental concepts in the offline counterfactual risk minimization setting that are
covered in Chapter 2 and 3. Next, Section 1.4 provides brief explanations on the intuition
of acceleration strategies that are used in the Chapter 3 to obtain faster convergence rates.
Section 1.5 presents some of the kernel scalability issues that arise in the algorithms presented
in Chapter 4 and that are also used in Chapter 2. Then, Section 1.6 provides the essential
background to define the stochastic bandit setting that are instrumental to Chapter 3, 4, 5.
Eventually, Section 1.7 introduces the basic notions on online optimization that are used in the
analysis of the adversarial bandit setting considered in Chapter 5. We provide a summary of
the introduction sections and the associated contributions of this thesis in Figure 1.1.

Sequential Learning
Offline/Counterfactual Learning

Chapter 2

Offline policy 
learning with 
logged data

Online policy 
learning in bandits

On the scalability of 
kernel methods

Faster rates with 
acceleration 
strategies

No regret 
algorithms in online 

optimization

Chapter 3 Chapter 4 Chapter 5

Figure 1.1: Summary of the introduction to the contributions of the thesis.
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1.1. Motivations and practical problems
We start by introducing a few practical problems that arise in advertising companies

such as Criteo, which motivated this PhD thesis at the Criteo AI Lab in collaboration with
INRIA. The introduction of this thesis will then aim at providing foundations to understand
existing solutions and algorithms that can be applied for those challenges that may arise in
Criteo.

Beyond A/B Testing In traditional A/B testing, the objective of the designer is to decide
which option (A or B) is better. For example, company designers could consider whether
to place a new feature in a product being deployed. However, such methods have practical
limitations. First, if we view the two versions of the site as policies πA or πB being deployed,
running policies that are "suboptimal" may induce large development and experimentation
costs or even be dramatic in sensitive applications. Second, in typical online platforms a large
majority of A/B tests yield neutral or negative decisions Kohavi et al. (2009). Thus, offline
estimation of policy performance allows experimenters to design plausible option policies for
the A/B testing as discussed in Chapter 2. Moreover, traditional A/B testing may require
multiple deployments to collect sufficient sample size and enhance variance control. In that
case, considering sequential deployments of offline and online A/B options as presented in
Chapter 3 could be particularly meaningful especially if the original option policies where
under-performing.

Online bidding Today most free-to-use services and content applications are funded by
advertising. Different forms of advertising exist yet the most widespread type involves
running real-time auctions to sell advertising space in an economic efficient manner. In
such industries, billions of auctions come out daily between the same group of buyers and
sellers. In such bidding problems, a real valued bid is predicted in response to contextual
information from user inputs. Using log data, it is possible to design policies that improve
upon a previous system when using continuous action modellings, as discussed in Chapter 2.
Leveraging the data accumulated from these interactions, various methods are employed to
acquire a thorough understanding of the intricate mechanisms that maximize seller revenue
and bidder value. Conversely, when considering online policies, the most straightforward
framework is to assume a sequential, stochastic game to design efficient strategies for large
scale applications as presented in Chapter 4. More realistic assumptions would model this
problem with adversarial settings as we did in Chapter 5, but we note that this problem in
itself is a broader concept that we did not aim at solving completely in the latter.

Advert Placement In the context of advertising placement, each user visiting a website can
be seen as a round, and the available ads can be considered as the set of actions. A standard
multi-armed bandit problem can be used, where a policy chooses an ad at each round, and the
reward is 1 if the user clicks on the ad and 0 otherwise. However, for a company like Criteo,
targeted advertising is essential, and user context should be taken into account. This can be
achieved by using the user context, such as in contextual bandits. The methods used in this
PhD thesis tackle complex issues of real-world systems, with the set of available ads changing
from round to round, with action set structures of various nature, exploration constraints,
and other metrics such as scalability and efficiency being important as well. We highlight
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the scalability issues of such contextual bandits methods in online settings in Chapter 4. For
sensitive applications where logged data is used instead to learn a policy offline we provide
methods in Chapter 3 to learn policies with sequential deployments.

Personalized treatments Another extremely related application is personalized treatment.
Example applications entail precision (or personalized) medicine. While sequential learning
can be used to continually treat and accurately diagnose patients based on their individual
characteristics and medical history as new information about their health becomes available,
online deployments can be sensitive and unethical. Therefore, in personalized medicine,
offline policy learning is often more suitable than online or sequential learning approaches.
To do so, randomized control trials are run on patients to assess the effectiveness of a new
treatment or intervention. After the participants are randomly assigned to either a treatment
group or a control group, an offline analysis is a posteriori possible to perform counterfactual
reasoning and learning as described in Chapter 2 or even Chapter 3.

Resource allocation Maintaining a low infrastructure cost is a key problematic in many tech
companies including Criteo. While a significant effort in operations research has involved
developing methods for distributing limited resources effectively, the problem can resemble
a bandit problem in situations where the fluctuations of demand or supply are not certain.
As a matter of fact, with a combinatorial structure that resembles the nested structure we
present in Chapter 5, one could design a strategy to allocate resources that have similarities
in outcome. Distributing marginally different resources can only provide limited insight into
the actual demand, while providing excessive resources can lead to wastage. However, it
should be noted that resource allocation is a broad concept and many issues have unique
structures that do not fit into the typical framework of bandit problems.

1.2. Contributions of the thesis
This thesis brings various contributions with regard to the study of counterfactual policy

learning in the offline logged bandit feedback and in sequential learning problems. We review
the contributions hereafter.

• Chapter 2 presents methods in modelling, learning and model selection for counterfac-
tual learning of stochastic policies with continuous actions. Continuous action policies
have received little attention in the CRM setting while being ubiquitous in many prob-
lems (drug dosage, online bidding), our work introduces an effective modelling in that
setting which improves the state of the art. Moreover, closely related to learning, we show
how appropriate tools can bring signifcant benefits in the optimization perspectives of
non-convex and non-differentiable CRM objective functions that have been overlooked.
Eventually, we bring contributions in the problem of reliably evaluating learned policies
based on logged data only which is crucial in pratice. We propose an offline model se-
lection protocol and release a new large-scale dataset obtained from a real-world system
for evaluation benchmark. All of those are also validated by numerical experiments.
This work has led to a workshop paper and a working journal paper that are given below.
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H. Zenati, A. Bietti, M. Martin, E. Diemert, and J. Mairal. Optimization ap-
proaches for counterfactual risk minimization with continuous actions. Interna-
tional Conference on Learning Representation (ICLR), Causal Learning for Decision
Making Workshop, 2020b

H. Zenati, A. Bietti, M. Martin, E. Diemert, P. Gaillard, and J. Mairal. Counter-
factual learning of stochastic policies with continuous actions: from models to
offline evaluation. arXiv preprint arXiv:2004.11722, 2020a

• Chapter 3 formalizes an extension of the CRM learning principle that is essential in
real-world problems. In the logged bandit feedback, when the logging policy underex-
plores the action space, importance sampling methods in counterfactual learning are
proned to large variance issues which often leads to the failure of CRM. In that case,
collecting additional data to increase the sample size is desirable and is more efficient
with sequential data collection designs. To that effect, when sequential deployments
are possible, we introduce sequential counterfactual risk minimization (SCRM). Our
method uses a novel counterfactual estimator with controlled variance, extends the
analysis of CRM and provides fast rates under an assumption as in restart strategies
in optimization. Moreover, numerical results show the efficiency of our method. This
chapter has been published as a conference paper.

H. Zenati, E. Diemert, M. Martin, J. Mairal, and P. Gaillard. Sequential counter-
factual risk minimization. International Conference on Machine Learning (ICML),
2023

• Chapter 4 completely shifts to an online setting and introduces an efficient algorithm
for Kernel UCB (K-UCB) in stochastic contextual bandits. While the standard K-UCB
algorithm requires a O(T 3) complexity where T is the horizon, we propose an efficient
contextual algorithm for large-scale problems using kernel approximations. More
specifically, with incremental Nyström approximations of the joint kernel embedding
of contexts and actions we achieve a complexity of O(CTm2) where m is the number
of Nyström points. Typically, m is of order of the effective dimension of the problem,
which is at most O(

√
T ) and nearly constant in some cases. We numerically validate

this approach and obtain as well empirical improvements upon existing methods in the
Bayesian experimental design litterature. This work has led to the following conference
paper.

H. Zenati, A. Bietti, E. Diemert, J. Mairal, M. Martin, and P. Gaillard. Efficient
kernelized ucb for contextual bandits. In International Conference on Artificial
Intelligence and Statistics (AISTATS), 2022
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• Chapter 5 presents contributions in online decision-making. When choosing between a
large number of similar alternatives that have similar losses, it can be particularly diffi-
cult to find an optimal strategy. Standard algorithms may explore irrelevant alternatives,
leading to high regret. We introduce a setting that we call nested bandit problems, where
there are many distinct alternatives with embedded similarities. To solve this problem,
we propose the Nested Exploration Weighting algorithm that explores alternatives
layer by layer and the Exponential Weights with Experts and Nesting algorithm when
learning with expert advice, resulting in improved regret guarantees. This chapter has
been published as a conference paper and is also based on a manuscript in preparation.

M. Martin, P. Mertikopoulos, T. Rahier, and H. Zenati. Nested bandits. Interna-
tional Conference on Machine Learning (ICML), 2022

Manuscript in preparation:

H. Zenati, T. Rahier, M. Martin, and P. Mertikopoulos. Sequential Decision
Processes with Outcome Similarities

Moreover, we highlight that this thesis led to open-source softwares related to the
contributions above, which are given in Appendices 2.9, 3.8, 4.7, 5.9 and that we restate
below:

– Chapter 2: https://github.com/criteo-research/optimization-continuou
s-action-crm

– Chapter 3: https://github.com/criteo-research/sequential-conterfactu
al-risk-minimization

– Chapter 4: https://github.com/criteo-research/Efficient-Kernel-UCB

– Chapter 5: https://github.com/criteo-research/Nested-Exponential-Wei
ghts

Other contributions of this thesis, which are not included in this manuscript are
collaborations on Criteo internal technical reports in combinatorial bandits.

1.3. Offline policy learning with logged data
In this section we provide the theoretical foundations of the counterfactual risk mini-

mization (CRM) framework to learn an offline policy in the logged bandit feedback problem.
To understand the counterfactual learning methods in (CRM), we introduce an overview of
the empirical risk minimization framework in statistical learning.

1.3.1. Empirical Risk Minimization

In order to present the empirical risk minimization framework, we start by introducing
the supervised learning setting which is a category of statistical learning. For a more in-depth
discussion on the topic, we address the reader to (Bach, 2023).

https://github.com/criteo-research/optimization-continuous-action-crm
https://github.com/criteo-research/optimization-continuous-action-crm
https://github.com/criteo-research/sequential-conterfactual-risk-minimization
https://github.com/criteo-research/sequential-conterfactual-risk-minimization
https://github.com/criteo-research/Efficient-Kernel-UCB
https://github.com/criteo-research/Nested-Exponential-Weights
https://github.com/criteo-research/Nested-Exponential-Weights
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The supervised learning setting

Given some observations (xi, yi)i=1,··· ,n ∈ X ×Y , of pairs of inputs (features or covariates
such as images, text, sequences of DNA, times series) and targets (labels that can be binary,
categorical or continuous responses), the objective in supervised learning is to predict a new
y ∈ Y given a new previously unseen x ∈ X . Note that in supervised learning, a probabilistic
formulation is used to see pairs (xi, yi)i=1,··· ,n as realizations of random variables, that are
assumed to be independent and identically distributed (i.i.d.). To quantify the prediction
objective we define a loss function l : Y ×Y → R where l(y, ŷ) is the loss of predicting ŷ while
the true target is y.

Then, the criterion is to maximize the expectation of some “performance” measure with
respect to the distribution of the data. Given a prediction function f : X → Y , we can define
the expected risk (also referred to as generalization error) of a function as the expectation of
the loss function between the output y and the prediction f(x):

R(f) = Ex,y [l(y, f(x))] =

∫
X×Y

l(y, f(x)) dp(x, y), (1.1)

where p is the probability distribution on X × Y . As a matter of fact, the risk is taken as
the expectation over the randomness of the targets as well since we also consider random
predictions. The optimal predictor (also referred to as Bayes optimal predictor) f∗ is then the
minimizer of R over the measurable elements of YX :

f∗ ∈ argmin
f∈YX

R(f). (1.2)

A learning algorithm aims at finding a prediction function f̂ from the observational data
such that R(f̂) is small, ideally close to the optimal (Bayes) risk R(f∗). Therefore, we usually
use the following excess risk definition:

∆f = R(f)−R(f∗). (1.3)

It is now natural to ask when it is possible to obtains guarantees on a learning algorithm
with n observations, which is usually obtained in two manners. First, we can consider
upper bounding the excess risk by a term that vanishes to zero when n tends to infinity: the
algorithm is consistent in expectation. Another way is to guarantee that for any ε > 0,

R(f̂)−R(f∗) ≤ ε

holds for a given level of confidence, which is called “Probably approximately correct”
(PAC) learning. Interestingly, without searching f̂ in a particular subset of functions F ⊂ YX ,
it is not possible in general to obtain such guarantees, for instance if X is infinite in a
classification task as stated in a form of the no free lunch theorem (Shalev-Shwartz and
Ben-David, 2014).

Therefore, to learn a predictor with small risk, ideally close to the Bayes risk R(f∗), we
need restrictions on the function class, which creates an inductive bias to learning. Intuitively,
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a large function class is more likely to contain f∗, but a small class makes learning easier. This
leads to an estimation-approximation tradeoff:

R(f̂)−R(f∗) = R(f̂)−min
f∈F

R(f)︸ ︷︷ ︸
estimation error

+min
f∈F

R(f)−R(f∗)︸ ︷︷ ︸
approximation error

. (1.4)

The first term, the estimation error, deals with the ability to learn the best function in
the class F from a finite number of samples n and increases as the hypothesis class becomes
larger, since this makes learning harder. The second term, approximation error, decreases
when F gets larger and reaches zero once F is large enough to contain f∗. In the analysis of
the methods used in this thesis, we will focus on controlling the estimation error.

Learning from data

In practice, to learn from observational data, since we do not have the full knowledge of
the data distribution p, we need to estimate a prediction function from the observational data.
To do so we start by defining an empirical risk by averaging the loss on the observational
data:

R̂(f) =
1

n

n∑
i=1

l(yi, f(xi)). (1.5)

The empirical risk minimization for a function class F then consists in solving the
following optimization problem:

f̂ ∈ argmin
f∈F

R̂(f). (1.6)

Often, we consider a parametrized family of prediction functions fθ : X → Y for θ in a
parameter (model) space Θ. To not overload the notations on the expect risk, we write:

L(θ) = R(fθ) (1.7)

the expected risk of the model θ in the model space Θ and L̂(θ) = R̂(fθ).

Example 1.3.1. The most classic example is linear least-squares regression where we minimize:

1

n

n∑
i=1

(yi − θ⊤ϕ(xi))2

over θ ∈ Θ ⊆ Rd and a fixed and known feature map ϕ : X → Rd.

In the decomposition of Eq. (1.4), the estimation error is related with the learning
algorithm and the use of a finite sample. One basic approach to control it is through uniform
convergence, which control maximal deviations between empirical and expected risk, for
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all functions in a function class F . Let θ∗ ∈ argminθ∈Θ L(θ) and θ̂ ∈ argminθ∈Θ L̂(θ) the
empirical risk minimizer, then:

L(θ̂)− L(θ∗) = L(θ̂)− L̂(θ̂) + L̂(θ̂)− L̂(θ∗) + L̂(θ∗)− L(θ∗)
≤ L̂(θ̂)− L̂(θ∗) + 2 sup

θ∈Θ
|L(θ)− L̂(θ)|.

Note that from the definition of empirical risk minimizer, the left term L̂(θ̂) − L̂(θ∗)
is negative in theory but in practice it may not when using optimization algorithms. The
uniform deviation supθ∈Θ |L(θ) − L̂(θ)| grows with the size of Θ and usually decays with
n.

Convergence rates To provide convergence rates and assess the performance of the empirical
risk minimization, it is then useful to bound the uniform deviation term that we considered.
In particular, when the loss is uniformly bounded by a constant C, using concentration and a
technique called symmetrization, it is possible (Boucheron et al., 2005; Shalev-Shwartz and
Ben-David, 2014) to obtain an upper bound with probability 1− δ:

sup
f∈F
|R(f)− R̂(f)| ≤ 2R̂n (l ◦ F) + C

2 log 2
δ

n
, (1.8)

where R̂n (l ◦ F) is the empirical Rademacher complexity of the set of empirical ob-
servations {l(f(x1), y1), . . . l(f(xn), yn) : f ∈ F}. This quantity typically grows with the
number of parameters and is often unbounded for rich, non-parametric classes (like ker-
nel methods). However, if we consider that l(· · · , y) is Cl-Lipschitz for any y, then using
the contraction lemma (Bartlett and Mendelson, 2002; Boucheron et al., 2005) we obtain
that R̂n (l ◦ F) ≤ ClR̂n(F) where R̂n(F) is the empirical Rademacher complexity of the
set {f(x1), . . . f(xn) : f ∈ F}. Eventually, for certain classes such as kernel methods with
a bounded norm, we can bound the latter complexity. For example, if we consider an
RKHS ball FB = {f ∈ H : ∥f∥H ≤ B} of a kernel K, and assume K(x, x) ≤ R2 for all
x ∈ X , we can bound (Bartlett and Mendelson, 2002; Boucheron et al., 2005) R̂n(F) ≤ BR√

n
.

Moreover for parametric decision rules, if we consider for example the linear decision rule
F = {fθ, such that fθ(x) = θ⊤x : ∥θ∥2B, if we further assume that ∥x∥ ≤ W , Kakade et al.
(2008) shows that R̂n(F) ≤ BW√

n
. It is then possible to bound the empirical risk minimizer

excess risk as:

L(θ̂)− L(θ∗) ≤ 2

(BWCl + 1)

√
log 2

δ

n

 . (1.9)

The latter bound is of order O(1/√n). However, one limitation of those upper bounds is
that they are dependent on properties that apply consistently across the entire set of possible
hypotheses F (as a result of uniform convergence bounds). As a result, they cannot take
advantage of beneficial statistical features that may only be present in functions that perform
well on the given data sample. It is possible to obtain better rates (known as fast rates) for
instance of order O(1/n).
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Capacity control In order to prevent overfitting, it is necessary to limit the complexity of
the model by reducing the number of parameters or constraining the norm of predictors.
This is commonly achieved through constrained optimization, which restricts the set of
allowed functions and reduces the size of the parameter space Θ. By doing so, it becomes
possible to decompose the risk as in Eq. (1.4). Even so, capacity control can be done through
regularization, that is by adding a penalty term in the minimization:

θ̂ ∈ argmin
θ∈Θ

L̂(θ) + Ω(θ), (1.10)

where Ω(θ) controls the capacity of the hypothesis fθ associated to θ ∈ Θ. This Ω term can
be a classical L2 penalization term in the simple ridge regression setting or a more convoluted
empirical variance term as used in sample variance penalization (Maurer and Pontil, 2009)
and discussed in the next subsection.

1.3.2. Counterfactual Risk Minimization

Next, we present the logged bandit feedback problem and follow with a presentation of
the counterfactual risk minimization (CRM) framework, which is at the core of Chapters 2
and 3.

The logged bandit feedback problem

In the logged bandit problem, we are given n logged observations (xi, ai, yi)i=1,...,n

where contexts xi ∈ X are sampled from a stochastic environment distribution xi ∼ PX ,
actions ai ∼ πθ0(·|xi) are drawn from a logging policy πθ0 . Unlike the supervised learning
setting, aside from the contextual information given in the (xi)i=1,...n we also consider actions
(ai)i=1,...n from a logging policy π0. We write s0 = (xi, ai, yi)i=1,...,n the logging dataset for
which actions are sampled under the logging policy. We consider in this setting parametric
policies and write θ0 the logging model in the parameter space Θ. The losses are drawn from
a conditional distribution yi ∼ PY(·|xi, ai). We define the propensities π0,i = πθ0(ai|xi) and
assume them to be known. We will assume that the policies in πθ, θ ∈ Θ admit densities so
that the propensities will denote the density function of the logging policy on the actions
given the contexts. The expected risk of a model θ is defined as:

L(θ) = Ex,θ,y [y] . (1.11)

For the logged bandit, the task is to determine a model θ̂ with small risk. A model
θ̂ is associated to a policy π̂θ in a set of stochastic policies ΠΘ. Thus, this definition may
also include deterministic policies by allowing Dirac measures, unless Π includes a specific
constraint e.g., minimum variance, which may be desirable in order to gather data for future
offline experiments as we will see in Chapter 3.

To minimizeLwe typically have access to an empirical estimator L̂ and solve the following
regularized problem:

θ̂ ∈ argmin
θ∈Θ

L̂(θ) + Ω(θ), (1.12)
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where Ω is a regularizer. When using counterfactual estimators for L̂, the solution of (1.12)
has been called counterfactual risk minimization (Swaminathan and Joachims, 2015a).

Counterfactual Learning

The counterfactual approach tackles the distribution mismatch between the logging
policy πθ0(·|x) and a policy πθ in ΠΘ via importance sampling. The (IPS) method (Horvitz
and Thompson, 1952) relies on correcting the distribution mismatch using the well-known
relation

L(θ) = Ex,θ0,y

[
y
πθ(a|x)
πθ0(a|x)

]
, (1.13)

under the common support assumption (the support of πθ support is included in the
support of πθ0), which allows to derive an unbiased empirical estimate where we recall
π0,i = πθ0(ai|xi):

L̂IPS(θ) =
1

n

n∑
i=1

yi
πθ(ai|xi)
π0,i

. (IPS)

Clipped estimator. Since the empirical estimator L̂IPS(θ) may suffer from large variance and
is subject to various overfitting phenomena, regularization strategies have been proposed.
In particular, this estimator may overfit negative feedback values yi for samples that are
unlikely under πθ0 (see motivation for clipped estimators in Appendix 2.9), resulting in higher
variances. Clipping the importance sampling weights in Eq. (cIPS) as Bottou et al. (2013)
mitigates this problem, leading to a clipped (cIPS) estimator

L̂cIPS(θ) =
1

n

n∑
i=1

yimin

{
πθ(ai|xi)
π0,i

, α

}
, (cIPS)

where α is a clipping parameter. Smaller values of α reduce the variance of L̂(θ) but
induce a larger bias. Swaminathan and Joachims (2015a) also use the sample variance
penalization principle (Maurer and Pontil, 2009) and propose adding an empirical variance
penalty term controlled by a factor λ > 0 to the empirical risk L̂(θ). Specifically, they write
νi(θ) = yimin

(
πθ(ai|xi)

π0,i
, α
)

and consider the empirical variance for regularization:

V̂ cIPS(θ) =
1

n− 1

n∑
i=1

(νi(θ)− ν̄(θ))2, with ν̄(θ) =
1

n

n∑
i=1

ν̄i(θ), (1.14)

which is subsequently used to obtain a regularized objectiveLwith hyperparametersα for

clipping and λ for variance penalization, respectively, so that ΩcIPS(θ) = λ

√
V̂ cIPS(θ)

n and:

L(θ) = L̂cIPS(θ) + λ

√
V̂ cIPS(θ)

n
. (1.15)

The (CRM) learning problem then is formulated as:

θ̂CRM ∈ argmin
θ∈Θ

L(θ). (CRM)
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A natural question now is to wonder whether we can provide statistical guarantees on
L(θ̂CRM) − L(θ∗) as we did in the supervised learning in the case of Eq. (1.9). Luckily, we
provide in Chapter 2 guarantees of a modified clipping estimator as well as an extensive
discussion on this matter with regards to the related work. In particular, Chapter 2 provides
a proposition that we simpplify below.

Proposition 2.5.1. Let θ̂CRM be the solution of (CRM). Then, with well chosen parameters λ
and M and other regularity assumptions detailed in the full proposition in Chapter 2, denoting
the variance ν2∗ = Varπ0

[
πθ∗(a|x)/πθ0(a|x)

]
, with probability at least 1− δ, the excess risk is

upper bounded as:

L(θ̂CRM )− L(θ∗) ≲
√

(1 + ν2∗) log(n)

n
,

where ≲ hides universal multiplicative constants.

The latter thus provides us a convergence rate of the (CRM) procedure. We further
illustrate in Chapter 3 how to improve those guarantees when sequential redeployments are
possible as presented in Section 1.4.

The self-normalized estimator. Swaminathan and Joachims (2015b) also introduce a reg-
ularization mechanism for tackling the so-called propensity overfitting issue, occuring with
rich policy classes, where the method would focus only on maximizing (resp. minimizing)
the sum of ratios πθ(ai|xi)/π0,i for negative (resp. positive) costs. This effect is corrected
through the following self-normalized importance sampling (SNIPS) estimator (Owen, 2013, see
also):

L̂SNIPS(θ) =

∑n
i=1 yiw

θ
i∑n

i=1w
θ
i

, with wθ
i =

πθ(ai|xi)
π0,i

. (SNIPS)

The (SNIPS) estimator is also associated to ΩSNIPS(θ) = λ

√
V̂SNIPS(θ)

n which uses an
empirical variance estimator that writes as:

V̂ SNIPS(θ) =

∑n
i=1

(
wθ
i

(
yi − L̂SNIPS(θ)

))2
(∑n

i=1w
θ
i

)2 . (1.16)

Note that another motivation of using (SNIPS) is that the (IPS) is not equivariant, that is
to say for a constant c:

c+min
θ∈Θ

1

n

n∑
i=1

yiw
θ
i ̸= min

θ∈Θ

1

n

n∑
i=1

(yi + c)wθ
i .

When the solution of the optimisation problem is affected by a translation y ← y + c
for any real valued c, the estimator is not equivariant. However, the (SNIPS) estimator does
verify:

c+min
θ∈Θ

∑n
i=1 yiw

θ
i∑n

i=1w
θ
i

= min
θ∈Θ

∑n
i=1(yi + c)wθ

i∑n
i=1w

θ
i

.
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In that case, the estimator is more robust to propensity overfitting (Swaminathan and
Joachims, 2015b) which is a phenomenon where the learned policies either overfit or avoid
the training data depending on the sign of the losses y. Eventually with the (SNIPS) estimator,
the learning objective becomes:

L(θ) = L̂SNIPS(θ) + λ

√
V̂ SNIPS(θ)

n
, (1.17)

and the (2.10) learning principle can be applied as well with the latter.

Direct Methods

It is possible to perform supervised learning in the logged bandit feedback and to
infer policies thereof. As a matter of fact, an important quantity is the expected cost given
actions and context, denoted by η∗(x, a) = E[y|x, a]. If this expected cost was known, an
optimal (deterministic) greedy policy π∗ would indeed simply select actions that minimize
the expected cost

π∗(x) = argmin
a∈A

η∗(x, a). (DM)

Therefore, it is then tempting to use the available data to learn an estimator η̂(x, a) of
the expected cost, for instance by using ridge regression to fit yi ≈ η̂(xi, ai) on the training
data. Then, we may use the deterministic greedy policy π̂DM(x) = argmina η̂(x, a). This
approach, termed direct method (DM), has the benefit of avoiding the high-variance problems
of IPS-based methods, but may suffer from large bias since it ignores the potential mismatch
between π̂DM and πθ0 . Specifically, the bias is problematic when the logging policy provides
unbalanced data samples (e.g., only samples actions in a specific part of the action space)
leading to overfitting (Bottou et al., 2013; Dudik et al., 2011; Swaminathan and Joachims,
2015b). Conversely, counterfactual methods re-balance these generated data samples with
importance weights and mitigate the distribution mismatch to better estimate reward function
on less explored actions (see explanations in Appendix 2.9). Nevertheless, such cost estimators
can be sometimes effective in practice and may be used to improve IPS estimators in the
so-called doubly robust (DR) estimator (Dudik et al., 2011) by applying (IPS) to the residuals
yi − η̂(xi, ai) as follows:

L̂DR(θ) =
1

n

n∑
i=1

(yi − η̂(xi, ai))
πθ(ai|xi)
π0,i

+
1

n

n∑
i=1

∑
a∈A

η̂(xi, a)πθ(a|xi), (DR)

which holds when the summation over A is possible (discrete action sets for e.g). As a
matter of fact, the (DR) estimator uses η̂ as a control variate to decrease the variance of (IPS).
We investigate in Chapter 3 the use of an additional control variate as well to control for the
variance of (IPS).

While such greedy deterministic policies may be sufficient for exploitation, stochastic
policies may be needed in some situations, for instance when one wants to still encourage
some exploration in a future round of data logs. Using a stochastic policy also allows us
to obtain more accurate off-policy estimates when performing cross-validation on logged
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data. Then, it may be possible to define a stochastic version of the direct method by adding
Gaussian noise with variance σ2:

π̂SDM(·|x) = N (π̂DM(x), σ2), (1.18)

In the context of offline evaluation on bandit data, such a smoothing procedure may also be
seen as a form of kernel smoothing for better estimation (Kallus and Zhou, 2018).

1.4. Obtaining faster rates with restart acceleration strategies
In this section we provide a very short introduction to restart strategies used in opti-

mization. This will allow to understand key contributions of Chapter 3 that uses similar
assumption and analysis techniques for a batched bandit policy learning setting.

1.4.1. Restart strategies

In this section, we present elements of restart strategies that exist in acceleration methods
in optimization. Rather than focusing on the sample efficiency of a statistical estimator, the
aim of this section will be to provide an intuition on how an objective function satisfying
generic Hölderian error bounds (HEB) can be optimized with a faster convergence rate,
that is to say fewer optimisation iterations. While the two are not the same, understanding
some of the elementary notions in this introduction will dramatically help grasp some of the
contributions in Chapter 3. For a thorough presentation of the restart strategies, we point the
reader to (d’Aspremont et al., 2021; Iouditski and Nesterov, 2014; Ghadimi and Lan, 2013;
Kulunchakov and Mairal, 2019).

An illustrative example: strongly convex objective functions

Typically, first-order methods in optimization (methods that use gradient information
of an objective function) have a sublinear convergence rate that depends on the smoothness
of the gradient (Beck, 2017). The upper complexity bounds of these methods are usually
convex functions of the number of iterations, which means that they converge quickly at first,
but their convergence slows down as more iterations are performed. The intuition of restart
methods is that it should be possible to speed up convergence by periodically restarting
the first-order methods, that is to say running more "early" iterations. Moreover, first order
methods implicitly approximate the function around the optimum at each iteration, and
restarting should refresh this approximation periodically to discard outdated information as
the algorithm approaches the optimal solution.

In restart strategies, the task is similar to what we do in Section 1.3.1 in the sense that we
perform a minimization (as in Eq. (1.2)) on a given function L (that can be an expected risk as
defined in Eq. (1.7)):

min
θ∈Θ

L(θ), (1.19)

where Θ ⊂ Rd is the compact parameter space that we consider in Section 1.3.1.

The acceleration method in restart strategies is possible through a chaining argument that
we will illustrate with a particular case of strongly convex objective functions L. Supposing
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Algorithm 1: Restart scheme
Input: Objective function L, initial point θ0, inner optimization algorithm A(θ, k), M

number of iterations and planning k1, . . . , kM
for m = 1 to M do

Obtain θm by running km iterations of A, starting at θm−1, i.e:

θm = A(θm−1, km)

end

that the gradient of L is Lipschitz continuous with constant C with respect to the Euclidean
norm:

∥∇L(θ′)−∇L(θ)∥2 ≤ C∥θ − θ′∥2 for all θ, θ′ ∈ Θ. (1.20)

If we use a straightforward fixed gradient method to solve that problem, we have the
iterates for k ∈ N:

θ(k+1) = θ(k) − 1

C
∇L(θ(k)) (1.21)

The smoothness assumption that stems for the gradient-Lipschitzness in Eq. (1.20) gives
off the upper bound:

L(θ(k))− L(θ∗) ≤ 2C∥θ0 − θ∗∥2
k + 4

(1.22)

after k iterations. If we now assume that L is strongly convex with parameter γ we
have:

γ

2
∥θ − θ∗∥2 ≤ L(θ)− L(θ∗), (1.23)

where θ∗ is a solution of (1.19). For any m and km the number of inner iterations in the
optimization algorithm A defined through km iterations of gradient descent updates with
(1.21), we write θm = A(θm−1, km) with θ0 an initial point. This means that we can rewrite Eq.
(1.22) as:

L(θm−1)− L(θ∗) ≤
2C∥θm − θ∗∥2

km + 4
(1.24)

Then, combining the latter upper bound and the strong convexity in (1.23), after an
iteration of the restart scheme in Algorithm 1, we obtain the chained inequality:

L(θm+1)− L(θ∗) ≤
2C∥θm − θ∗∥22

k + 4
≤ 4C

γ(k + 4)
(L(θm)− L(θ∗)) . (1.25)

If we set km = k = ⌈8Cγ ⌉ then:

L(θM )− L(θ) ≤
(
1

2

)M

(L(θ0)− L(θ∗)) ,
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after M iterations of the restart scheme in Algorithm 1. Therefore, if we run a total of
n =Mk gradient steps, we can write the previous upper bound as:

L(θ(n))− L(θ) ≤
(

1

2
γ
8C

)n

(L(θ0)− L(θ∗)) , (1.26)

which proves a linear convergence in the strongly convex case.

1.4.2. Hölderian Error Bounds

We now state the following assumption on Hölderian error bounds:

Assumption 1.4.1. There exist some γ, β > 0 such that

γd(θ, S∗
Θ) ≤ (L(θ)− L(θ∗))β , (1.27)

where d(θ, S∗
Θ) is some distance to the optimal set (S∗

Θ = argminθ∈Θ L(θ)).

This bound is akin to a local version of strong convexity (β = 1) or a bounded parameter
space (β = 0) if d is the Euclidean distance. When β ∈ [0, 1], this has also been referred to as
the Łojasiewicz assumption introduced in (Łojasiewicz, 1963, 1993).

It is important to note that a large class of functions L verify this bound. Specifically,
we address the reader to the details on subanalytic functions in (Bolte et al., 2007) and the
Łojasiewicz factorization lemma as stated in (d’Aspremont et al., 2021) to understand that
this bound holds for mild conditions (Θ the parameter space is globally subanalytic and L is
continuous and subanalytic).

Now, if it is possible to obtain a bound similar to that of Eq. (1.24), it will be possible to
use the same chaining argument as done in Eq. 1.25 to demonstrate faster convergence rates.
For example, for a C-smooth convex function Nesterov’s method (Nesterov, 1983) with an
optimal method (d’Aspremont et al., 2021) gives the upper bound:

L(θm+1)− L(θ∗) ≤
4C

km
2 ∥θm − θ∗∥22 (1.28)

after km iterations to obtain θm+1 with an initial point θm. It is then possible to show
improved convergence rates for a smooth convex function satisfying the previous inequality
as well as the Höderian error bound (d’Aspremont et al., 2021). In this thesis in Chapter 3, we
provide a similar formulation as a Hölderian Error Bound for the (CRM) risk that we try to
minimize and that can be previewed below.

Assumption 3.5.1 (Hölderian Error Bound). We assume that there exist γ > 0 and β > 0 such
that for any θ ∈ Θ, there exists θ∗ ∈ argminθ∈Θ L(θ) such that

γVarx,θ

(
πθ∗(x|a)
πθ(x|a)

)
≤ (L(θ)− L(θ∗))β .
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This variance term is not a distance but provides a similar intuition of how parameters
can be distant to the optimal parameter θ∗. For example, for Gaussian policies with fixed
variance, it is the exponential of the euclidean distance. Given that assumption, we show in
Chapter 3 how to derive improved variance dependent convergence guarantees (w.r.t Chapter
2) and we use a similar analysis as the restart strategy presented above to derive the following
result, which is a fast rate for (CRM).

Proposition 3.5.1 (Excess risk upper-bound). Let n ≥ 2 and θ∗ ∈ argminθ L(θ). Let
M ≈

⌊
log2(n)

⌋
. Then, under Assumption 3.5.1 and other regularity assumptions detailed in the

full proposition in Chapter 3, the SCRM procedure (Alg. 6) satisfies the excess risk upper-bound
for the round M :

L(θM )− L(θ∗) ≤ O
(
n
− 1

2−β log n
)
.

1.5. On the scalability of kernel methods
In this part we introduce background notions on kernel methods and reproducing

kernel Hilbert spaces (RKHS) that are used in Chapter 2 but more specifically in Chapter 4.
We also provide generalizations properties and notions of kernel approximations. For an
in-depth presentation of kernel methods, we address the reader to (Schölkopf and Smola,
2002; Shawe-Taylor and Cristianini, 2004; Berlinet and Thomas-Agnan, 2004) and to the lecture
notes (Vert and Mairal, 2020).

1.5.1. Kernels and Reproducing Kernel Hilbert Spaces

Kernel methods are a class of algorithms in machine learning that allow learning in
rich functional spaces. In particular, they use kernel functions to map the input data into
a different high dimensional (or infinite dimensional) space. With this embedding, simple
models can be trained on new non linear spaces, and has shown to drastically improve
performances of the models.

Definition 1.5.1. A positive definite kernel is a symmetric function K : S ×S → R such that for any
collection of points s1, . . . sn ∈ S and scalars α1, . . . αn ∈ R, we have:∑

1≤i,j≤n

αiαjK(si, sj) ≥ 0.

Conversely, kernel functions allow to define a gram matrix Kn:

Kn = [K(si, sj)]1≤i,j≤n

Equivalently,K is a positive definite kernel if for any n ∈ N and input data s1, . . . , sn ∈ Sn,
the previously defined gram matrix Kn is positive semidefinite. Kernel methods take such
matrices as input and have several advantages aside from their embedding properties that
we will mention in Section 1.5.2. First, kernel methods always use such n× n matrices for
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Figure 1.2: Representation of a kernel embedding

any input data (vectors, strings, etc.): the same algorithm can therefore work for multiple
problems and applications. Second, the choice of the kernel function K is independent of
the algorithm which therefore introduces a great modularity. However, note that they might
suffer poor scalability with respect to the dataset size due to the size of Kn as we will see in
Section 1.5.3. One contribution of this thesis in Chapter 4 subsequently aims at leveraging
methods for this issue.

More importantly, kernel functions introduce a notion of comparison between data points
between two objects s, s′ in the set S which may have any arbitrary structure and thus create
a similarity measure. Interestingly, it is in fact possible to show that such kernel functions are
associated to an inner product on some features that can be non-linear.

Theorem 1.5.1. (Aronszajn, 1950) A kernel K : S × S → R is positive definite if and only if there
exists a Hilbert spaceH and a feature map ϕ : S → H such that for any s, s′ ∈ S:

K(s, s′) = ⟨ϕ(s), ϕ(s′)⟩H. (1.29)

Such a feature map ϕ may define a spaceH in high dimensions on which linear models
are effective and can be applied. As a matter of fact, ϕ can be infinite dimensional which
makes the embedding of kernel methods very powerful. We now define Reproducing Kernel
Hilbert Spaces (RKHS).

Definition 1.5.2. Let S be a set andH ⊂ RS be a class of functions forming a real Hilbert space with
inner product ⟨·, ·⟩H. The function K : S2 → R is a called a reproducing kernel ofH if:

• For any s ∈ S, let Ks : t 7→ K(s, t), then Ks ∈ H
• For any s ∈ S and f ∈ H, the reproducing property holds:

f(s) = ⟨f,Ks⟩H

If such a reproducing kernelK exists, thenH is called a reproducing kernel Hilbert space (RKHS).

RKHS are of great interest due to the simplicity they bring in machine learning. As a
matter of fact, after mapping a data point s ∈ S to the RKHSH through a kernel mapping
ϕ : S → H with ϕ(s) = Ks, simple linear models f are considered inH with f(s) = ⟨f, ϕ(s)⟩.
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Note also that it is possible to show that the reproducing kernel is unique given a RKHS, and
conversely that a positive definite kernel defines a unique RKHS. This space characterizes
the functions that are learned in kernel methods and hence allow the modelling of smooth
functions.

Smoothness functional The reproducing property and the Cauchy-Schwarz inequality
imply that for s, s′ ∈ S, the variations of a function f ∈ H can be controlled as:

|f(s)− f(s′)| = |⟨f,Ks −Ks′⟩H|
≤ ∥f∥H × ∥Ks −Ks′∥H

The norm of a function in the RKHS controls the variation of a function over S with
respect to the geometry induced by the kernel, as small norm induces small variations.
Therefore, the norm in the RKHS is related to its smoothness with regard to the metric defined
by the kernel.

1.5.2. The Kernel Trick

Theoretical results on representing positive definite kernels as inner products and the
representer theorem allow to use a family of powerful kernel methods algorithms. In this
section we will introduce them.

Kernel Trick Recalling that the kernel is exactly the inner product in the feature space,
we can state a simple yet extremely powerful statement. Any algorithm to process finite
dimensional vectors and that is expressed only with pairwise inner products can be applied
to infinite or high dimensional vectors in the feature space of positive definite kernels by
replacing inner product evaluation by a kernel evaluation. Thus, vectors in the feature space
can be manipulated implicitly through pairwise inner products.

We can provide a more formal statement of this intuition through the following theo-
rem.

Theorem 1.5.2 (Representer theorem). Let S be a set endowed with a positive definite kernel K and
H be the corresponding RKHS. Let s0 = {s1, · · · , sn} ⊆ S a finite set of points. Let ψ : Rn+1 → R
be a function n+ 1 variables, strictly increasing with respect to the last variable. Then any solution of
the following optimization problem:

min
f∈H

ψ
(
f(s1), · · · , f(sn)), ∥f∥H

)
,

admits a representation of the following form, where there exists real numbers α1, · · · , αn such
that for any s ∈ S:

f(s) =

n∑
i=1

αiK(si, s) =

n∑
i=1

αiKsi(s).

The solution lives in a finite dimensional subspace:

f ∈ Span(Ks1 , · · · ,Ksn) (1.30)
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Note that the function ψ has the following form, where c(·) measures the "fit" of f to a
given problem (regression, classification, · · · ) and Ω is a strictly increasing regularization
function:

ψ
(
f(s1), · · · , f(sn), ∥f∥H

)
= c(f(s1), · · · f(sn)) + λΩ(∥f∥H)

First, from a theoretical perspective, this minimization enforces a small norm ∥f∥H, so as
to ensure a smoothness for the solution f . Second, we practically search for a solution in a
subspace of dimension n which can lead to tractable algorithms even though the RKHS is
infinite dimensional.

In the context of supervised learning models, this theorem allows to solve a regularized
empirical risk minimization problem in a simpler space than the hypothesis spaceH.

Example 1.5.1. Given a set of data (si ∈ S, yi ∈ R)i=1,...n, to estimate a regression function
f : S → R we can solve the classical minimization problem:

min
f∈H

1

n

n∑
i=1

l(yi, f(si)) + λ∥f∥H

for a loss function l. Solving this problem at first sight in the hypothesis space H that can be
infinite-dimensional is possible with the representer theorem, by stating that any solution writes as

f(s) =
n∑

i=1

αiK(si, s)

for some α1, · · ·αn ∈ R. Denoting α = (α1, · · · , αn) the problem simplifies into:

min
α∈Rn

1

n

n∑
i=1

l ((Kα)i, yi) + λα⊤Kα

which can be solved using standard convex optimization tools when the loss is convex. For the
kernel ridge regression, the squared loss l(ŷ, y) = (ŷ − y)2 induces the solution α = (K + nλIn)

−1y,
with y = (y1, · · · , yn)⊤.

1.5.3. Kernel Approximations to scale and speed up kernel methods

One major problem that arise in kernel methods is the scalability issue. While the previous
kernel trick and Representer theorem make kernel algorithms tractable, they can hardly scale
up to large sample sizes. Such methods require the computation or inversion of the n× n
Gram matrix which is infeasible when n grows both in terms of memory and computation.
In that situation, the use of low-rank approximations of the kernel embedding make such
approaches scalable while ensuring controllable properties as the original methods.
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Nyström approximations Often the kernel matrix has a low rank, so that approximating the
kernel matrix by sampling columns (Smola and Schölkopf, 2000; Williams and Seeger, 2001;
Fine and Scheinberg, 2002) allows for efficient computations. The Nyström method consists
in replacing any point Ks = ϕ(s) of the RKHSH for s ∈ S by its orthogonal projection onto a
finite dimensional subspace:

FZ = Span(ϕ(z1), · · · , ϕ(zp))

where Z = {z1, · · · , zp} are anchor points with typically p ≪ n. An illustration of the
Nyström approximation is provided in Figure 1.3.

FZ

φ(s)

ψ(s)

Hilbert space H

Figure 1.3: Representation of the Nyström approximation

To do so, an orthogonal projection PFZ is defined onto the subspace FZ so that the points
ϕ(s) can be approximated by ψ(s) = PFZϕ(s), with an inner product approximation as:

⟨ϕ(s), ϕ(s′)⟩H ≈ ⟨PFZϕ(s), PFZϕ(s
′)⟩H ≈ ⟨ψ(s), ψ(s′)⟩Rp = KZ(s)

⊤KZZKZ(s
′)

where we use the notationKZ(s) = [K(z1, s), . . . ,K(zp, s)]
⊤ andKZZ is the kernel matrix

vector [K(z, z′)]z,z′∈Z . In particular, ψ(s) = K
−1/2
ZZ KZ(s) ∈ Rp can be written as the finite

dimensional approximated feature map. The corresponding kernel matrix then is defined
as:

K̃n = K⊤
ZSKZZKZS

where KZS is the kernel matrix vector [K(z, s)]z∈Z,s∈s0 . K̃n is thus the low-rank approxi-
mation of the original Gram matrix Kn.

As a matter of fact, in Chapter 2, we illustrate how we can provide an embedding over a
joint context-action space S = X ×A where using a kernel K and its Nyström approximated
feature map ψ, we manage to build an embedding to derive a cost predictor as in Figure 2.1
that we tease below.

To find the anchor points of the Nyström approximation, several strategies have been
studied. One can use a naive random sampling, perform a kernel PCA to find largest principal
directions in the Gram matrix, a simple K-means algorithm or eventually a greedy approach
to find columns with largest residuals. Note that the latter is equivalent to computing an
imcomplete Cholesky factorization (Bach and Jordan, 2005; Fine and Scheinberg, 2002). The
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contexts x ∈ X

actions a ∈ A

K((x, a), (x′, a′))

Joint kernel embedding

ψ(x, a) ∈ Rp

Nyström approximation

ηβ(x, a) = ⟨β, ψ(x, a)⟩

Cost predictor

Figure 2.1: Illustration of the joint kernel embedding for the counterfactual loss predictor (CLP).

Nyström sampling has the advantage to admit geometric interpretation and to provide
points in the RKHS, so that many operations such as translations, linear combinations on the
mapping are valid.

A natural problem is to study the influence of m on the prediction performance of a
learning system. In the ridge regression problem Bach (2013); Alaoui and Mahoney (2015)
show that it is possible to preserve good convergence rates with an m much smaller than n,
which allows large scale learning. In Chapter 4, we also provide an analysis of the number
m to preserve the original regret rate of the algorithm we studied in contextual stochastic
bandits. We present here one the results that are presented in Chapter 4 as a contribution
of this thesis and where we seen the influence of the parameter m on the notion of regret
(presented in Section 1.6). Typically this result can be coupled with a capacity condition
assumption on the kernel to explicit regimes where it is possible to recover the original regret
rate while improving the computational complexity. We present a discussion on this matter
in Chapter 4.

Theorem 4.4.1. Let T ≥ 1 and θ∗ ∈ H. Under some boundedness assumptions detailed in the
full statement in Chapter 4, the EK-UCB rule in Eq. (4.4.1) with a regularization parameter λ and
with m = |Zt| dictionary updates, satisfies the pseudo-regret bound

RT ≲
√
T
(√

m+
√
deff(λ, T )

)(√
λ+

√
deff(λ, T )

)
.

where deff(λ, T ), the effective dimension (Hastie et al., 2001) of the kernel matrix KT

replaces the dimension d in the (LinUCB) regret bound and is given formally as:

deff(λ, T ) := Tr(KT (KT + λIT )
−1).

Random features We also note that another approach exists to perform kernel approxima-
tions that is based on sampling techniques. In particular, some kernels K can be written in
the form:

K(s, s′) = Ew∼p

[
ϕ(s, w)ϕ(s′, w)

]
,

where ϕ(s, w) is termed as a random feature and p is some probability measure. Example
of kernels that verify this condition are translation invariant kernels that can be written
K(s, s′) = κ(s−s′) where the probability measure p can be obtained with κ using the Bochner



1.6. Online policy learning in bandits 23

theorem (Vert and Mairal, 2020). Then, the random features ϕ(s, w) can be constructed using
random Fourier features (Rahimi and Recht, 2007) and samples w1, . . . , wm can be drawn
from p to define a finite dimensional mapping ψ(s) = 1√

m
(ϕ(s, w1), . . . , ϕ(s, wm))⊤ so that

when m is large, we have:
K(s, s′) ≈ ⟨ψ(s), ψ(s′)⟩2.

It is then possible to study the influence of m to obtain generalization bounds (Rudi and
Rosasco, 2017; Bach, 2017) in learning problems.

1.6. Online policy learning in bandits
In this section, we formalize the bandit problem and present foundations to understand

some of the contributions of this thesis. While the previous section introduced notions on
statistical learning and in particular on counterfactual learning methods for the offline logged
bandit problem, the present section actually introduces methods on sequential learning for
"online" bandits. The interested reader may find more details in (Bubeck and Cesa-Bianchi,
2012; Lattimore and Szepesvári, 2020) as well as the tutorial (Foster and Rakhlin, 2022) and
the lecture notes (Gaillard, 2022).

A bandit problem is a sequential game between an agent and an environment. The agent
plays for T rounds where T is called horizon. At each round t ∈ [T ], the learner (agent) first
chooses an action (arm) at from a given set A, and the environment then reveals a reward
rt ∈ R where rt = r(at, t) where r is a reward function that can be arbitrary or stochastic.
In the bandit literature (Lattimore and Szepesvári, 2020) the multi-armed bandit setting
(Thompson, 1933; Robbins, 1952; Lai and Robbins, 1985), or k-armed bandit setting refers
to the setting where there are at least two arms. The learner only takes action based on the
previous history (a1, r1, · · · , at−1, rt−1). A policy π uses all previous information from the
history to take actions and the goal for an agent is often to find a policy that chooses actions
that lead to the largest possible cumulative reward over all T rounds, which is

∑T
t=1 rt.

First, the main difficulty in bandits lies in that the environment is unknown to the agent.
When an agent learns, it only supposes that the environment lies in an environment class. A
large environment class corresponds to less knowledge by the agent. Second, to evaluate an
agent, the notion of regret is used, which is the difference between the total expected reward
using a policy π for T rounds and the total expected reward collected by the agent over T
rounds. The regret relative to a policy class Π is the maximum regret relative to any policy
π ∈ Π. Therefore, if the policy class Π is large enough, it may include the optimal policy for
all environments in the environment class. Thus, a large policy class means that the regret is
a more demanding criteria. In bandit algorithms (Lattimore and Szepesvári, 2020), the aim is
to define algorithms with assumptions that make the regret meaningful and so that there
exist policies with small regret.

Stochastic Bandits A simple problem that we focus on in this thesis is that of stochastic
bandits. A bandit is stochastic when the sequence of rewards associated to any action is
independent and identically distributed according to some distribution. This stochasticity
thus corresponds to an assumption on the environment class, when r(a, t) ∼ νa where νa is a
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At each time step t = 1, · · ·T
– the agent chooses an action at ∈ A from the policy π
– given at, the environment draws the reward r(at, t) ∼ νat
– the agent observes the feedback rt = r(at, t) and updates its policy π

Stochastic Bandit setting

stochastic distribution. This assumption will be relaxed in Section 1.7. For some applications
indeed, the assumption that the rewards are stochastic may be too restrictive. The objective in
stochastic bandits is to minimize the cumulative regret:

RT = max
a∈A

T∑
t=1

r(a, t)−
T∑
t=1

rt.

In stochastic bandits, we generally assume that the sequences to be i.i.d. Each arm a is
associated to an unknown probability distribution νa over [0, 1] and r(a, t) ∼ νa. The player
aims at finding the arm with the highest reward. We also denote:

µa = E[r(a, t)], and µ∗ ∈ argmax
a∈A

µa

As a matter of fact, it is sometimes hard to design algorithms for the true expected regret.
In Bernoulli bandits, for example when νa ∼ B(1/2), for a = 1, . . . , k when |A| = k, we have
that for any arm a ∈ A E[r(a, t)] = 1/2 and for any chosen action at by the learner at round t,
E[r(at, t)] = 1/2. The maximum cumulated sum of rewards is then a random walk which
expected magnitude is of order:

E

[
max
a∈A

T∑
t=1

r(a, t)

]
≈
√
T log k

Therefore, in that case even though all arms are optimal, the expected regret is of order√
T log k and cannot be less. In the stochastic setting, we thus consider a quantity called the

pseudo-regret which corresponds to competing with the best action in expectation, rather
than the optimal action on the sequence of realized rewards. The pseudo regret is defined
as:

R̄T = Tµ∗ − E

[
T∑
t=1

µat

]
(1.31)

Note that the pseudo-regret is upper-bounded by the expected regret R̄T ≤ E[RT ]. This
explains why it is harder to design algorithms that minimize the true expected regret. We
will then use the pseudo-regret in the following.

In the next parts, we will write µ̂a(t) the empirical mean of rewards obtained when
pulling arm a after t rounds. Let us also denote for all arms a = 1, . . . , k the suboptimal gap
by:

∆a = µ∗ − µa, (1.32)
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and the following quantity:

Ta(t) =
t∑

s=1

1{as = a}, (1.33)

be the number of times action a was chosen by the agent after the end of round t. In
general, the latter quantity Ta(t) is random, even if the leaner uses a deterministic policy: this
stems from the stochasticity of the rewards.

Lemma 1.6.1 (Regret decomposition lemma). For any policy π and stochastic bandit environment
ν with A finite with A = k and horizon T ∈ N, the pseudo-regret R̄T of policy π in ν satisfies:

R̄T =

(
k∑

a=1

E[Ta(T )]

)
µ∗ − E

(
k∑

a=1

Ta(T )µa

)
=

k∑
a=1

∆a E[Ta(T )] (1.34)

The latter lemma separates the regret in terms of losses due to each arm is conceptually
important. Indeed, an agent should aim at using an arm with a larger suboptimality gap
fewer times to minimize the regret.

1.6.1. Optimism in the Face of Uncertainty Learning principle

In this part, we introduce some "optimistic" bandit algorithms, namely the upper
confidence bound methods. The Optimism in the Face of Uncertainty Learning (OFUL)
principle is at the core of methods developed in Chapter 4.

Upper Confidence Bound Algorithm

The Upper Confidence Bound (UCB) algorithm (Auer et al., 2002) uses the Optimism in
the Face of Uncertainty Learning (OFUL) principle (Abbasi-yadkori et al., 2011) which leads to
taking actions as if the outcome would be as great as possible, given a level of confidence. This
algorithm has the advantage to not rely on an initial exploration phase but rather explores on
the fly as observations come. Moreover, the algorithm does not require knowledge of gaps
and explores and exploits sequentially throughout the game.

Formally, at any round t, for each arm a, the agent builds a confidence interval Ia(t) on
its expected reward based on past observation (a1, r1, · · · , at−1, rt−1):

Ia(t) = [LCBa(t),UCBa(t)],

where LCB is a lower confidence bound of the expected reward of the arms and UCB is
an upper confidence bound. The agent then acts optimistically in the sense that it chooses the
arm with the best "plausible" reward, that is with the highest upper confidence bound:

at ∈ argmax
a∈A

UCBa(t).

The intuition is that by pulling arms through all rounds up until the horizon, the
agent can optimistically explore and exploit through adjusting the confidence intervals to
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discard unconvincing arms. The natural question then is to ask how to design the upper-
confidence-bounds. First, we define an empirical estimate of the means of all arms a as
follows:

µ̂a(s) =
1

s

s∑
s′=1

1{a = as′}r(a, s′), (1.35)

which has an expectation mean µa. Therefore, to design a confidence interval, we can
use the Hoeffding’s inequality to have that for all arms a ∈ {1, . . . , k}, for all s ≥ 1 and all
δ ∈ [0, 1]:

P

µa ≥ µ̂a(s) +
√

log 1
δ

2s

 ≤ δ. (1.36)

At round t, the learner has observed Ta(t− 1) samples from arm a and received rewards
from that arm with an empirical mean of µ̂a(t− 1). Then a reasonable candidate for an upper
confidence bound of the unknown mean of arm a is:

UCBa(t− 1) =


∞ if Ta(t− 1) = 0

µ̂a(Ta(t− 1)) +

√
2 log(1/δ)

Ta(t− 1)
otherwise. (UCB)

Algorithm 2: Upper Confidence Bound Algorithm (UCB)
Input: Action set A and level of confidence δ
for t = 1 to n do

Choose action at = argmaxa∈A UCBa(t− 1)
Observe reward rt = Xat,t and update UCBa(t) with updates of Eq. (1.33) and Eq.
(1.35) and δ ;

end

It is then possible to bound the pseudo-regret of (UCB) and provide the following theorem
as in (Lattimore and Szepesvári, 2020).

Theorem 1.6.1. If the distributions νa have supports included in [0, 1] then for all a such that ∆a

E [Ta(T )] ≤
8 log(T )

∆2
a

+ 2. (1.37)

In particular, this implies that the pseudo-regret of (UCB) is upper bounded as

R̄T ≤ 2k +
∑

a,∆a>0

8 log(T )

∆a
(1.38)
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(UCB) has a regret bound of order

R̄T ≤
8k(log(T ) + 1)

∆
, (1.39)

where ∆ = mina,∆a>0∆a. Then, by reformulating Eq. (1.37) into:

∆a ≤ 2

√
2 log T

E [Ta(T )]− 2
, (1.40)

and using Eq. (1.34) we can obtain by using a Jensen inequality:

R̄T ≲
√
Tk log(T ). (1.41)

The bound is close to the lower bound that is of order O(
√
kT ). As a matter of fact, it is

possible to match that lower bound and remove the logarithmic term. The MOSS (Minimax
Optimal Strategy in the Stochastic case) algorithm (Audibert and Bubeck, 2009) in particular
depends on the smallest gap ∆ but achieves the upper bound:

R̄T ≲ min
{√

Tk,
k

∆
log

T∆2

k

}
. (1.42)

Note eventually that there exists other algorithms in the literature for this problem. Two
of the most used algorithms in practice are ε-greedy algorithm and Thompson sampling
(Thompson, 1933). ε-greedy algorithm samples the arm with the best empirical mean
with probability ε ∈ [0, 1] and explores by playing a random arm with probability 1 − ε.
When ∆ is known, such an algorithm can be calibrated to obtain an upper bound of order
R̄T ≲ k log(T )/∆2. Thompson sampling assumes a prior over the expected rewards µa,
then at each round t ≥ 1, for each arm, it computes ν̂a,t the posterior distribution of the
rewards of an arm a given the rewards observed in history. Then, it samples a parameter
θa,t ∼ ν̂a,t independently and selects an arm subsequently at ∈ argmaxa∈A θa,t. Thompson
sampling has a similar bound as UCB of order R̄T ≲ k log(T )/∆ but has the advantage to
easily incorporate prior knowledge on arms.

1.6.2. Stochastic Linear Bandits

Stochastic linear bandits (Li et al., 2010; Abbasi-yadkori et al., 2011) use another model:
at round t, the agent is given the time-dependent decision set At ⊂ Rd from which it selects
an action at ∈ At and receives the reward:

rt = ⟨θ∗, at⟩+ εt, (1.43)

where εt are i.i.d. centered subGaussian noise given A1, a1, r1, . . . ,At−1, at−1, rt−1,At, at
and θ∗ ∈ H is an unknown parameter. The pseudo regret then writes as:

R̄T = E

[
T∑
t=1

max
a∈At

⟨θ∗, a⟩ −
∑
t=1

rt

]
(1.44)
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Note here that the time-dependency of At is crucial as it allows to consider a contextual
linear bandit problem At = {ϕ(xt, a) : a ∈ A} where xt is a context in a space X . This allows
for the contextual bandit extension that is studied in Chapter 4. Note also that it is clearly
possible to recover the multi-arm bandit setting with At = {e1, . . . , ed}where (ei)i=1,...,d are
the unit vectors of Rd.

The generalization of the previous UCB algorithm is based on the intuition to maintain
for each possible action an estimate of the mean reward as well as a confidence interval
around that mean. Then, at each time the agent chooses the highest upper confidence bound.
Formally, if we have a confidence set Ct ⊂ Rd based on samples (xt, at, yt), for t ∈ {1, . . . , T}
that contains the unknown parameter vector θ∗ with high probability, we may define:

LinUCBt(a) = max
θ∈Ct
⟨θ, a⟩ (1.45)

as an upper bound on the mean pay-off ⟨θ∗, a⟩ of a. To choose the highest upper confidence
bound from the confidence set at time t, the algorithm then selects:

at ∈ argmax
a∈At

LinUCBt(a). (1.46)

The next step is to construct a confidence set Ct. To do so, we look for two essential
properties: (i) Ct should contain θ∗ with high probability and (ii), Ct should be as small as
possible to control the actions selected. Therefore, following the idea of UCB, instead of
empirically estimating the arms’ unknown means, we will estimate θ∗. To do so, we build an
empirical estimate of θ∗ using regression. More precisely, we use the regularized least square
estimator:

θ̂t ∈ argmin
θ

t−1∑
s=1

(⟨θ, as⟩ − rs)2 + λ∥θ∥22 (1.47)

where λ is a regularization parameter. λ > 0 ensures the minimization problem is
well posed when previously sampled actions a1, . . . , at do not span Rd. When defining the
following quantities:

Vt =
t∑

s=1

asa
⊤
s + λI and V0 = λI, (1.48)

the solution to Eq. (1.47) is analytically obtained as:

θ̂t = V −1
t

t∑
s=1

asrs (1.49)

Since θ̂t is an estimate of θ∗, we can design an ellipsoidal confidence set Ct centered
around θ̂t. We then define

Ct = {θ ∈ Θ : ∥θ − θ̂t∥Vt ≤ B(δ)} (1.50)
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where ∥θ∥V = θTV θ, and B is a bound on δ that is to be defined. When the rounds t
pass, the matrix Vt has increasing eigenvalues, therefore the volume of the ellipse is also
shrinking so long as the latter quantity B does not grow too fast. Eventually, with Ct in
the form of an ellipsoid with center θ̂ and radius β = B(δ), we can write analytically the
solution of Eq. (1.45). Indeed, note that by defining B2 = {x ∈ Rd : ∥x∥2 ≤ 1} the unit ball
with the Euclidean norm, it is easy to see that Ct = θ̂t + β1/2V −1/2B2. Therefore, for θ ∈ B2

maximising the quantity ⟨θ, a⟩ = aT θ̂t + β1/2aTV −1/2θ, immediately gives that:

LinUCBt(a) = ⟨θ̂t, a⟩+ β1/2∥a∥V −1
t

(LinUCB)

The (LinUCB) policy is summarized in Algorithm 3.

Algorithm 3: Linear Upper Confidence Bound Algorithm (LinUCB)
Input: Action set A and tuning parameter β
for t = 1 to n do

Choose action at = argmaxa∈A⟨θ̂t−1, a⟩+ β1/2∥a∥V −1
t−1

Observe reward rt and update Vt in (1.48) and estimate θ̂t with (1.49);
end

We now introduce some results for discussing the regret guarantees of the (LinUCB)
algorithm. We start by the following lemma (Lattimore and Szepesvári, 2020).

Lemma 1.6.2. Let δ ∈ [0, 1]. Then, with probability at least 1− δ, if maxa∈At ∥a∥2 ≤ 1, for all t ≥ 1:

∥θ̂t − θ∗∥ ≤
√
λ∥θ∗∥+

√
2 log

1

δ
+ d log

(
1 +

T

λ

)
(1.51)

It is then natural to define B(δ) as follows:

B(δ) =
√
λ∥θ∗∥+

√
2 log

1

δ
+ d log

(
1 +

T

λ

)
(1.52)

Remark 1.6.1. Note that here, the definition of B(δ) depends on the quantity ∥θ∗∥ which is unknown.
When running the algorithm, to define β = B(δ), we need to use an upper bound of the value ∥θ∗∥.

Eventually, we can show the following upper bound on the pseudo-regret.

Theorem 1.6.2. Let T ≥ 1 and θ∗ ∈ Rd. Assume that for all a ∈ At, |⟨θ∗, a⟩| ≤ 1, with ∥θ∗∥ ≤ 1
and ∥at∥ ≤ 1, then LinUCB satistifies the pseudo regret bound:

R̄T ≤ Cλd
√
T log T, (1.53)

where Cλ is a universal constant that depends on λ.

Note that under further assumptions, it is possible to improve the latter bound. When
the set of available actions at time t is fixed and finite, with cardinal |A| = k, elimination
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algorithms (Chu et al., 2011; Lattimore and Szepesvári, 2020) allow to achieve the upper
bound:

R̄T ≤ Cλ

√
Td log(Tk)

which improves the previous (LinUCB) bound by a factor
√
d/ log k and thus achieves

the optimal rate of order O(
√
dT ) (Foster and Rakhlin, 2022). However such methods are

not practical (Valko et al., 2013) for real-world applications in the sense that the elimination
phases too often take suboptimal actions.

Contextual Stochastic Bandits

Contextual stochastic bandits are a class of problem where at each round t, the agent
receives a context xt ∈ X that is drawn from a stochastic distribution. The agent then chooses
an action conditionally on that context. This setting generalise the previous multi-armed
setting by allowing the learner to make use of side information, which is more realistic for
many applications.

As stated before, a contextual bandit extension is possible (Chu et al., 2011) with the
previous LinUCB algorithm by considering a time-dependent set of action At as At =
{ϕ(xt, a) : a ∈ A} where xt is a context in a space X and ϕ is a feature map associated to
a kernel. An extension of the (LinUCB) setting to a contextual bandit setting with kernel
methods is presented in Chapter 4 as a (K-UCB) rule. In particular, we extend in this
thesis the standard analysis of the OFUL algorithm for linear bandits (Abbasi-yadkori et al.,
2011; Chowdhury and Gopalan, 2017) to the kernel setting using martingale argument and
non-trivial extensions of concentration bounds to infinite-dimensional objects. We present
below a result that is given in Chapter 4.

Theorem 4.3.1. Let T ≥ 2 and θ∗ ∈ H. Under some boundedness assumptions detailed in the
full statement in Chapter 4, the K-UCB rule defined in Eq. (1.46) satisfies the pseudo-regret bound

RT ≲
√
T
(
∥θ∗∥

√
λdeff(λ, T ) + deff(λ, T )

)
.

We will present in the next subsection the details on kernel methods that are key to
understand the other contributions made in Chapter 4. Eventually, note that other methods
relying on regression oracles (Agarwal et al., 2014; Foster and Rakhlin, 2020; Simchi-Levi and
Xu, 2022) have been proposed for the contextual bandit task but are out of the scope of the
(OFUL) principle.

1.6.3. Batch sequential policy learning

For the practical problems presented in Section 1.1, a realistic setting is to assume that the
data collected is used to design a policy that is redeployed and used to collect additional data
and reiterate the learning process, as in Chapter 3. As a matter of fact, many experiments
such as clinical trials are typically conducted in batches, where groups of patients are treated
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concurrently, and the data collected from each batch is indeed utilized to inform the design
of subsequent batches.

This setting has been clarified by important theoretical works under different settings. In
the reinforcement learning (RL) literature (Sutton and Barto, 1998), such methods have been
referred to as off-policy learning algorithms. However, RL methods assume transitions in states
that are thus more complicated than the basic assumptions of the basic bandit settings, where
an action does not influence the sampled contexts. Using the multi-armed bandit framework
instead as in (Perchet et al., 2015), it is possible to answer important questions related to
conducting such experiments, for example what can be accomplished with a limited number
of batches, how large these batches should be, and how outcomes in one batch should inform
the structure of subsequent batches. This framework presents an exploration-exploitation
dilemma that needs to be carefully considered. We will present a basic algorithm in the
contextual batch bandit setting to understand methods that are closely related to the one we
study in Chapter 3.

Let T be the time horizon of the problem. At the beginning of each time t ∈ [T ], the
decision maker observes contexts xt ∈ X where X ⊂ Rd. When the decision maker selects an
action a ∈ A, a reward rt as in Eq. (1.43):

rt = ⟨θ∗, ϕ(xt, at)⟩+ εt, (1.54)

where εt is a sequence of zero-mean independent sub-Gaussian random variables that we can
assume to be 1-sub-Gaussian. Unlike the standard online setting where the decision maker
immediately observes the reward rt after taking an action at, the reward can only be seen
at the end of batch m ∈ [1, . . .M ] where the horizon T is partitionned into M units. More
specifically, given a total batch size M , a sequential batch bandit algorithm has:

1. A grid T = {t1, t2, . . . , tM} with t0 = 0 and tM = T . Intuitively, this grid partitions the
T units into M batches: the m-batch contains units of samples tm−1 to tm. The decision
maker can choose in its strategy a grid T or that grid can be imposed in the problem.

2. A sequential batch policy π = (π1, π2, · · · , πM ) such that each πm can only use informa-
tion from all the prior batches (contexts, actions and rewards (xt, at, rt)t=1,··· ,tm)

To assess the performance of a sequential batch bandit algorithm, we also use a pseudo
regret metric as in Eq. (1.44):

R̄T = E

[
T∑
t=1

max
a∈At

⟨θ∗, ϕ(xt, a)⟩ −
∑
t=1

rt

]
(1.55)

Even though the pseudo regret defined in this context aligns with that of standard online
learning in Eq. (1.44), it encompasses a more ambitious objective due to the presence of
delays induced by batches in obtaining reward feedback. This results in a situation where the
decision maker cannot promptly incorporate feedback into their subsequent decision-making
process. Moreover, this allows to compare the performance to that of an oracle utilized in the
standard online learning scenario.
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A sequential Batch UCB algorithm

Following the (OFUL) principle, the most straightforward approach in batch contextual
bandits is to extend (Han et al., 2020) the (LinUCB) algorithm to a batch setting as follows. It
is also possible to define the following quantities, as in Eq. (1.48) and Eq. (1.57):

Vm = Vm−1 +

tm∑
s=tm−1

ϕ(xs, as)ϕ(xs, as)
⊤ and V0 = λI, (1.56)

the solution to Eq. (1.47) is analytically obtained as:

θ̂m = V −1
m

tm∑
s=1

rsϕ(xs, as) (1.57)

Using the latter quantities, it is then possible to define a confidence interval Cm as in
Eq. (1.50) and an update rule as in (LinUCB). The Sequential Batch UCB algorithm is then
summarized in Algorithm 4.

Algorithm 4: Sequential Batch UCB (SBUCB) (Han et al., 2020)
Input: Action set A, grid T = {n1, · · ·nM}, tuning parameter β
for m = 1 to M do

for n = 1 to nm do
Choose action at = argmaxa∈A⟨θ̂m−1, ϕ(xt, a)⟩+ β1/2∥ϕ(xt, a)∥V −1

m−1

end
Observe rewards of the m=th batch (rt)t=tm−1,···tm and update Vm in (1.56) and
estimate θ̂m with (1.57);

end

Han et al. (2020) shows the following theorem in the finite action case and under the
assumption that the action set is finite and that is the dimension d is relatively low compared
to T .

Theorem 1.6.3. (Han et al., 2020) Let T ≥ 1 and θ∗ ∈ Rd. Assume that for all a ∈ At, |⟨θ∗, a⟩| ≤ 1,
with ∥θ∗∥ ≤ 1 and ∥at∥ ≤ 1, then SBUCB satistifies the pseudo regret bound:

R̄T ≤ Cλ

√
T

M

(
d

√
T

M
+
√
Md

)
log T log Tk, (1.58)

where Cλ is a universal constant that depends on λ.

This theorem is important as it shows that taking a number of batches in the order of
√
dT

should allow to recover the same optimal rate ofO(
√
dT ) as in (Chu et al., 2011). Nevertheless,

O(
√
dT ) can be a large number and conversely, if only a constant number of batches are

available, then the regret is linear.



1.7. Going further: no-regret algorithms in online optimization 33

In Chapter 3, we instead require less assumptions on the action setA, nor on the dimension
d of the context space X . Moreover, instead of deriving adaptive strategies from the (OFUL)
principle, companies might be interested in sequential designs of policies that are learned
with the conservative CRM offline learning principle.

1.7. Going further: no-regret algorithms in online optimization
We now end this introduction with this section which objective is to provide background

and an introduction to the dual averaging technique (Nesterov, 2009) that is at the core of
the analysis of the algorithms discussed in Chapter 5. In particular, we present no-regret
algorithm in online optimization which is the sequential learning setting that is considered in
that chapter.

Notations Throughout what follows, V will denote a finite-dimensional real space with
norm ∥ · ∥ and A ⊂ V will be a closed convex subset thereof. We will also write V∗ for
the (algebraic) dual of V , ⟨y, a⟩ for the canonical pairing between y ∈ V∗ and x ∈ V , and
∥y∥∗ = sup{⟨y, a⟩ : ∥a∥ ≤ 1} for the dual norm of y ∈ V∗.

Online optimization is concerned with solving a series of decision problems over time
and is more general than the bandit problems presented before. The goal is to minimize
the overall loss experienced over a sequence of unknown loss functions that are arbitrary
unlike the stochastic assumptions considered in Section 1.6. In essence, the standard online
optimization scenario can be described as a sequence of steps where at each stage, the agent
(learner) chooses an action at ∈ A that incurs a loss lt(at) based on a loss function lt : A → R
which is received by the learner. The learner then updates their actions and the process
repeats.

At each time step t = 1, · · ·T
– the agent chooses an action at ∈ A
– given at, an arbitrary loss lt(at) is incurred
– the agent observes a feedback and updates its action at+1

Online optimization setting

Conceptually, it is extremely important to note here that an action a here can refer to a
distribution on a set of arms 1, . . . , k, that is to say A = ∆(k) is the simplex on Rk. This stems
from the idea that a learner does not define a strategy by choosing a deterministic arm as
in stochastic bandits, but rather defines a distribution on possible arms to sample arms and
prevent adversaries to manipulate the losses lt.

Based on some properties of lt, we can consider the following basic problems: the online
convex (respectively strongly convex) optimization where lt is assumed convex (respectively
strongly convex) or online linear optimization where each lt is assumed linear, i.e of the form
lt(a) = −⟨vt, a⟩ for some payoff vector vt ∈ V . Note that linear and strongly convex problems
are both convex problems but otherwise different. For the rest of this introduction, we will
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consider linear problems and require that each lt is differentiable and attains its minimum in
A.

To measure the performance of learner, the notion of regret, similarly to Section 1.6, is
defined as:

RT = max
a∈A

T∑
t=1

[lt(at)− lt(a)] . (1.59)

which is also a difference of the cumulated loss incurred by the agent after T stages and that
of the best action in hindsight. Contrary to the definition given in 1.6, the loss lt is arbitrary
and is not drawn from a fixed distribution as before. This makes a drastic difference and
will enable us to consider adversarial bandits (Lattimore and Szepesvári, 2020). For both
cases, the agent’s regret contrasts the performance of the agent’s policy at to that of an action
a∗ ∈ argmina∈A

∑T
t=1 lt(a) which minimizes the cumulated incurred loss over all rollouts.

Instead, we also consider a pseudo metric regret that is defined as in Eq. (1.31)

R̄T = max
a∈A

E

[
T∑
t=1

[lt(at)− lt(a)]
]
. (1.60)

The goal in online optimization is to define algorithms that achieve no regret, that is:

RT

T
−→

T→+∞
0. (1.61)

As in stochastic bandits in Section 1.6, the effectiveness of a policy is then assessed based on
the rate of the regret that is actually achieved, which is determined by examining the specific

expression within which RT

T
vanishes to zero.

Feedback assumptions In online optimization, it is possible to assume different level of
information available to the learner. The access to the entire loss lt can be given to the
optimizer after an action at is chosen, which is termed as the full information feedback setting.
This opposes to the bandit feedback as presented before (in the logged bandit feedback problem
in Section 1.3 and in bandit problems in Section 1.6, 1.4) where only lt(at) is revealed to the
learner.

Moreover, many online learning algorithm require gradient information. In the analysis
that is used in works of the literature (Shalev-Shwartz, 2007; Zinkevich, 2003; Mertikopoulos,
2019) an assumption on imperfect gradient feedback is made so that when a gradient "oracle"
is called at a point at, the learner has access to a gradient vector of the form:

∇t = ∇lt(at) + Zt, (1.62)

where Zt is defined as the "observational error" in the oracle gradient. Typically, we
decompose Zt in the form of:

Zt = ut + bt (1.63)
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where ut is zero mean and bt captures the mean of Zt. We then define the following
statistics to classify the problems that return imperfect gradient feedback.

Bt = E [∥bt∥] (bias)
σ2t = E

[
∥ut∥2

]
(variance)

M2
t = E

[
∥∇t∥2

]
(second moment).

(1.64)

No-regret algorithms

We now present no-regret algorithms and specifically make the link between Follow-
the-Regularized-Leader and Mirror Descent strategies that are used in the literature (Lattimore
and Szepesvári, 2020, see Chapter 28) to analyze adversarial bandit algorithms as we do in
Chapter 5 of this thesis. Specifically, we introduce such strategies to eventually present the
dual averaging method.

Leader-following policies Starting from the intuition that the optimizer can play the action
that is optimal in hindsight up to stage t, it is possible to derive a no-regret strategy. This
strategy is known as follow-the-leader (FTL) and can be expressed as:

at+1 ∈ argmin
a∈A

t∑
s=1

ls(a). (FTL)

However, it is known that this strategy induces a positive regret in simple examples
where the loss lt can oscillate from one round to another and be manipulated by an adversary.
To circumvent this, it is possible to regularize the update rule with penalty term which that
leads to the so-called follow the regularized leaser (FTRL) that can be given as:

at+1 ∈ argmin
a∈A

t∑
s=1

ls(a) +
1

γ
h(a). (FTRL)

Here, h : A → R is a regularization function and γ > 0 is a parameter that can be chosen
by the learner to optimize its learning guarantees. It is then standard to require additional
assumptions on h to provide such guarantees.

Assumption 1.7.1. h is continuous and it is strongly convex, that is, there exists C > 0 such that:

[λh(a′) + (1− λ)h(a)]− h(λa′ + (1− λ)a) ≥ C

2
λ(1− λ)∥a− a′∥2 (1.65)

for all a, a′ ∈ A and λ ∈ [0, 1].

Moreover, the regret analysis of (FTRL) is typically performed under the following
assumption on the loss lt.

Assumption 1.7.2. Each lt is convex and it is Lipschitz continuous, i.e:

|lt(a′)− lt(a)| ≤ Lt∥a′ − a∥ (1.66)

for some Lt > 0 and all a, a′ ∈ A.
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Then, in this setting, the following result applies:

Theorem 1.7.1. (Shalev-Shwartz, 2007) Assuming Assumptions 1.7.1 and 1.7.2 and supposing that
(FTRL) is run against a sequence of loss functions lt, t = 1, . . . T , then (FTRL) achieves no-regret
with the regret bound:

RT ≤
H

γ
+
γ

C

T∑
t=1

L2
t (1.67)

where H = maxh−minh is the "depth" of h overA. In particular, if supt Lt <∞ and writing
L = supt Lt and if we set γ = 1

L

√
HC
T , the incurred regret is bounded as:

RT ≤ 2L

√
H

C
T. (1.68)

This theorem illustrates how it is possible to achieve no-regret under a simple strategy and
the dependencies of the regret on the regularization function h. Although the dependency on
the horizon T is of order

√
T , the dependencies on the alternative set as discussed in Chapter

5 typically stem for the quantity H presented above.

Online gradient descent Another simple way to minimize the online loss is to use its
gradient to take a step against it and repeat the process, as it is done in gradient descent in
optimization. When faced with a different loss function at each stage, the policy derived from
such a process is known as online gradient descent (OGD). Using the projection operator

P (a) = argmin
a′∈A

∥a′ − a∥2, (1.69)

we define the update rules:
at+1 = P (at + γtVt) (OGD)

where γt > 0 is the algorithm step size and Vt defined as

Vt = −[∇lt(at) + Zt] (1.70)

with Zt being defined as the "observational error" in the oracle gradient in Eq. (1.63). We
illustrate the online gradient descent procedure in Figure 1.5.

We can now establish the following regret bound:

Theorem 1.7.2. (Zinkevich, 2003) Assuming Assumption 1.7.2 and supposing that (OGD) is run
against a sequence of loss functions lt, t = 1, . . . T with step size γt = γ, then (OGD) achieves satisfies
the pseudo-regret bound:

R̄T ≤
diam(A)2

2γ
+
γ

2

T∑
t=1

M2
t + diam(A)

T∑
t=1

Bt (1.71)

where diam(A) = max{∥a−a′∥ : a, a′ ∈ A} denotes the diameter ofA. In particular, if suptMt <∞
and writing M = suptMt and if we set γ = (1/M) diam(A)/

√
T , with unbiased feedback Bt = 0

the incurred regret is bounded as:
RT ≤ diam(A)M

√
T . (1.72)
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Figure 1.5: Representation of online gradient descent

Up to multiplicative constants, the bound in (1.72) is essentially the same as the corre-
sponding bound in (1.68) for (FTRL) and are in order of O(

√
T ); as long as the oracle does

not suffer from systematic errors in (OGD). In other words, (OGD) achieves the same regret
minimization rate as (FTRL), even though the latter requires a full information oracle.

Online Mirror Descent There are cases where taking into account the problem’s geometry
may allow for improved regret guarantees. A natural question that arises is whether running
(OGD) with a non-Euclidean norm can lead to better regret bounds. For this, Online Mirror
Descent (OMD) is a generalization of (OGD) to better exploit the geometry of the decision
space A. This algorithm is the online counterpart of the Mirror Descent algorithm from
convex optimization.

To define it, let us first rewrite the projection defined in (1.69) as:

P (a+ y) = argmin
a′∈A

{∥a+ y − a′∥2}

= argmin
a′∈A

{∥a− a′∥2 + ∥y∥2 + 2⟨y, a− a′⟩}

= argmin
a′∈A

{⟨y, a− a′⟩+D(a′, a)}

where
D(a′, a) =

1

2
∥a′ − a∥2 = 1

2
∥a′∥2 − 1

2
∥a∥2 − ⟨a, a− a′⟩ (1.73)

is the squared Euclidean distance between a and a′. The generality of (OMD) comes
from the updates being performed into a dual space which is defined by a C-strongly convex
"distance generating function" h : A → R. More particularly, by replacing the latter Euclidean
distance with what we call the Bregman divergence induced by h:

Dh(a
′, a) = h(a′)− h(a)− ⟨∇h(a), a− a′⟩ (1.74)

by then defining the prox-mapping for any a ∈ A, Proxa(y) : V∗ → A as:

Prox
a

(y) = argmin
a′∈A

{⟨y, a− a′⟩+Dh(a
′, a)} for all y ∈ V∗. (1.75)
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Online Mirror Descent (OMD) is then defined as follows:

at+1 = Prox
at

(γtVt) (OMD)

where γt is a variable step-size sequence, and the signals Vt as in (1.70).

Example 1.7.1. Consider the quadratic distance generating function h(a) = 1
2∥a∥2 that gives the

Euclidean prox-mapping:

Prox
a

(y) = argmin
a′∈A

{⟨y, a− a′⟩+ 1

2
∥a′ − a∥2} = P (a+ y). (1.76)

We therefore recover the Euclidean gradient descemt with (OMD).

Example 1.7.2. As an example, consider A = ∆(k) the standard unit simplex of Rk, and consider the
entropic regularizer:

h(a) =

k∑
j=1

aj log aj . (1.77)

A standard calculation shows that h is strongly convex and that the induced prox-mapping is
given as:

Prox
a

(y) =

(
aj exp(yj)∑k

j′=1 aj′ exp(yj′)

)
1≤j≤k

(EGD)

which provides the entropic gradient descent update of :

aj,t+1 =
aj,t exp(γtVj,t)∑k

j′=1 aj′,t exp(γtVj′,t)
. (1.78)

In the bandit literature, this algorithm update is known as exponential weights or Exponentiated
Gradient forecaster.

We now provide the basic regret guarantees of (OMD).

Theorem 1.7.3. (Shalev-Shwartz, 2007) Assuming Assumption 1.7.2 and supposing that (OMD) is
run against a sequence of loss functions lt, t = 1, . . . T with step size γt = γ, then (OMD) achieves
satisfies the regret bound:

R̄T ≤
H

γ
+

γ

2C

T∑
t=1

M2
t + diam(A)

T∑
t=1

Bt, (1.79)

where diam(A) = max{∥a − a′∥ : a, a′ ∈ A} denotes the diameter of A and H = maxh −minh
denotes the "depth" of h over A. In particular, if suptMt <∞ and writing M = suptMt and if we
set γ = (1/M)

√
2CH/T , with unbiased feedback Bt = 0 the incurred regret is bounded as:

RT ≤M
√
(2H/C)T . (1.80)
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The main difference between the bounds of (OGD) and that of (OMD) is the factor 2H/C.
As a matter of fact, instead of the quantity diam(A), the geometry of the problem is taken
into account in the terms H and C, as explained in the following example.

Example 1.7.3. Going back to Example 1.7.2, the entropic regularizer in (1.77) has a strong convexity
modulus C = 1 and its depth H over A is:

H = maxh−minh = 0−
k∑

j=1

(1/k) log(1/k) = log k. (1.81)

Hence if (EGD) is run against a multi-armed bandit with bounded payoffs ∥lt∥∞ ≤ 1, we obtain
a regret bound of the form:

RT ≤
√
2T log k. (1.82)

By comparison, the corresponding bound for (OGD) is RT ≤ 2
√
kT so (EGD) improves upon it

by a factor
√
2k/ log k.

Therefore, even both algorithms enjoy the same O(
√
T ) regret bound, the difference in

multiplicative constants can result in a substantial enhancement compared to the problem’s
dimension. This can be extremely beneficial for real-world machine learning, and is something
that we specifically work on in Chapter 5.

The link between FTRL and OMD, the Dual Averaging We will now establish the relation
between (FTRL) and (OMD) and introduce the dual averaging method. We first start by
providing a simple example where (FTRL) and (OGD) strategies coincide.

Example 1.7.4. Consider an unconstrained linear problem with action setA = Rd, with regularization
function h(a) = 1

2∥a∥2, and linear losses of the form lt(a) = −⟨vt, a⟩, for some sequence vt ∈ Rd. In
that case, the (FTRL) update is expressed as:

at+1 = argmin
a∈A

{ t∑
s=1

ls(a) +
1

γ
h(a)

}
= argmin

a∈Rd

{
∥a∥ − 2γ

t∑
s=1

⟨vs, a⟩
}

(1.83)

= argmin
a∈Rd

∥∥∥a− γ t∑
s=1

⟨vs, a⟩
∥∥∥ = γ

t∑
s=1

vs = at + γvt (1.84)

which is the unprojected gradient update of (OGD).

Actually, it is possible to modify the (FTRL) strategy with a gradient trick to require the
same assumptions as (OMD) and establish relations between the two strategies. Specifically,
it possible to define a variant of (FTRL) which only requires first-order oracle information
that is, the same type of feedback as (OMD). The idea is to replace the loss lt(a) with the
linear surrogate:

l̃t(a) = lt(at) + ⟨∇lt(at), at − a⟩, (1.85)

which yields the update:

at+1 = argmin
a∈A

{ t∑
s=1

l̃s(a) +
1

γ
h(a)

}
= argmax

a∈A

{
γ

t∑
s=1

⟨∇ls(as), a⟩ − h(a)
}
. (1.86)
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Figure 1.6: Representation of dual averaging

Contrary to (FTRL), this policy only requires first-order information on lt (and coincides
with it in case of linear losses). When the feedback available to the optimizer is a gradient
signal Vt of the form (1.70), we can define the follow-the-linearized-leader (FTLL) policy:

at+1 = argmax
a∈A

{
γ

t∑
s=1

Vs − h(a)
}
. (FTLL)

Thus if we introduce the notion of the "mirror map" of h being defined for all y ∈ V∗
as:

Q(y) = argmax
a∈A

{
⟨y, a⟩ − h(a)

}
. (1.87)

We can write the (FTLL) in a recursive form with to yield the dual averaging method, with
γt > 0 a variable step size parameter:{

yt+1 = yt + γtVt
at+1 = Q(yt+1).

(DA)

Here, yt ∈ V∗ is an auxiliary dual variable that aggregates gradient steps. The name
“dual averaging” is due to Nesterov (2009) and illustrates how gradients are “averaged”
directly where they are in the dual space V∗ before being “mirrorred” back through Q to the
problem’s original space A. We provide in Figure 1.6 a schematic representation of the dual
averaging procedure.

Example 1.7.5. Going back to the quadratic regularizer h(a) = 1
2∥a∥2 that yielded an Euclidean

projection for (OMD), we now obtain the mirror map:

Q(y) = argmax
a∈A

{
⟨y, a⟩ − 1

2
∥a∥2

}
= P (y), (1.88)

where P is the projection defined in (1.69). We thus obtain the so-called lazy gradient descent
update: {

yt+1 = yt + γtVt
at+1 = P (yt+1).

(LGD)
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Figure 1.7: Representation of "lazy" and "eager" gradient descent

As a matter of fact, in the online learning literature, (DA) is often referred to as the “lazy”
variant of (OGD) and (OMD) (Zinkevich, 2003; Shalev-Shwartz, 2012). This statement refers
to the idea that the algorithm performs a "lazy" aggregation of gradient steps, in the sens that
it doesn’t transport the gradient steps to their original state. Instead, it only projects them to
A in order to create a new gradient signal.

Actually, the selection of the distance-generating function h has a significant impact on
establishing the relationship between (DA) and (OMD), which performs "eager" updates
unlike (DA). A schematic difference between "lazy" and "eager" updates is provided in Figure
1.7.

As a matter of fact, Mertikopoulos (2019) studies under which conditions on h induces
the same updates for the lazy and eager variants. In particular, h needs to intuitively be
"steep" at the boundary of A, but the discussions on this matter are out of the scope of this
thesis. More importantly, we detail again the entropic regularization example with the (DA)
update.

Example 1.7.6. Going back to example 1.7.2, it is easy to show that the mirror map associated to the
entropic regularizer h(a) =

∑k
j=1 aj log aj is the logit choice rule:

Γ(y) =

(
exp(yj)∑k

j′=1 exp(yj′)

)
j=1,...k

, (1.89)

which gives the "Hedge" policy:

{
yt+1 = yt + γtVt
at+1 = Γ(yt+1)

(Hedge)

when unfolding aj,t+1 ∝ aj,t exp(Vj,t) and given that
∑k

j=1 aj,1 = 1 in the simplex, the sequence of
iterates of (Hedge) is the same as (EGD).

The latter example demonstrates that for entropic regularization, the "lazy" and "eager"
versions of (OMD) are the same. Therefore, we will not make much differentiation between the
two variants of (OMD) due to the aforementioned reasons and will use the regret guarantees
of Theorem 1.7.3 in the methods we will develop.
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In Chapter 5, we provide results on the pseudo-regret of algorithms for adversarial
multi-armed bandit problems. Specifically, when a similarity structure is known we can
define a effective number of arm keff that is typically much smaller that k. Then, it is possible
to improve the regret bound given by EXP4 (Auer et al., 2003) and prove the following with a
(DA) analysis:

Theorem 5.5.1 (EWEN Regret). Suppose that Algorithm 15 is run with a non-increasing
learning rate γt > 0 against a sequence of cost vectors lt ∈ [0, 1]E , t = 1, 2, . . . , as per (5.4). Then,
the learner enjoys the regret bound

E[RT ] ≤
HE
γT+1

+
keff
2

T∑
t=1

γt (1.90)

with keff given by (5.13) and HE is defined as the depth over ∆(E) of the entropic regularizer hE
in (5.12.1), i.e.,

HE = maxhE −minhE = logM (1.91)

In particular, if Algorithm 15 is run with γt =
√
logM/(2t · keff), we have

E[RT ] ≤ 2
√
keff logM · T . (1.92)

Moreover, we propose in Chapter 5 a nested entropy on the similarity structure to propose
the following regret bound that in turn improves the regret of EXP3 (Vovk, 1990; Littlestone
and Warmuth, 1994; Auer et al., 1995) with a (DA) analysis.
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2
Counterfactual Learning of Stochastic

Policies with Continuous Actions

Counterfactual reasoning from logged data has become increasingly important for many
applications such as web advertising or healthcare. In this chapter, we address the problem of
learning stochastic policies with continuous actions from the viewpoint of counterfactual risk
minimization (CRM). While the CRM framework is appealing and well studied for discrete
actions, the continuous action case raises new challenges about modelization, optimization,
and offline model selection with real data which turns out to be particularly challenging. Our
work contributes to these three aspects of the CRM estimation pipeline. First, we introduce
a modelling strategy based on a joint kernel embedding of contexts and actions, which
overcomes the shortcomings of previous discretization approaches. Second, we empirically
show that the optimization aspect of counterfactual learning is important, and we demonstrate
the benefits of proximal point algorithms and differentiable estimators. Finally, we propose
an evaluation protocol for offline policies in real-world logged systems, which is challenging
since policies cannot be replayed on test data, and we release a new large-scale dataset along
with multiple synthetic, yet realistic, evaluation setups.

This chapter is based on the following material:

H. Zenati, A. Bietti, M. Martin, E. Diemert, and J. Mairal. Optimization approaches
for counterfactual risk minimization with continuous actions. International Conference
on Learning Representation (ICLR), Causal Learning for Decision Making Workshop, 2020b

H. Zenati, A. Bietti, M. Martin, E. Diemert, P. Gaillard, and J. Mairal. Counterfactual
learning of stochastic policies with continuous actions: from models to offline
evaluation. arXiv preprint arXiv:2004.11722, 2020a

44
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2.1. Introduction
Logged interaction data is widely available in many applications such as drug dosage

prescription (Kallus and Zhou, 2018), recommender systems (Li et al., 2012), or online
auctions (Bottou et al., 2013). An important task is to leverage past data in order to find a
good policy for selecting actions (e.g., drug doses) from available features (or contexts), rather
than relying on randomized trials or sequential exploration, which may be costly to obtain or
subject to ethical concerns.

More precisely, we consider offline logged bandit feedback data, consisting of contexts
and actions selected by a given logging policy, associated to observed rewards. This is known
as bandit feedback, since the reward is only observed for the action chosen by the logging
policy. The problem of finding a good policy thus requires a form of counterfactual reasoning
to estimate what the rewards would have been, had we used a different policy. When the
logging policy is stochastic, one may obtain unbiased reward estimates under a new policy
through importance sampling with inverse propensity scoring (IPS, Horvitz and Thompson,
1952). One may then use this estimator or its variants for optimizing new policies without the
need for costly experiments (Bottou et al., 2013; Dudik et al., 2011; Swaminathan and Joachims,
2015a,b), an approach also known as counterfactual risk minimization (CRM). While this
setting is not sequential, we assume that learning a stochastic policy is required so that one
may gather new exploration data after deployment.

In this chapter, we focus on stochastic policies with continuous actions, which, unlike
the discrete setting, have received little attention in the context of counterfactual policy
optimization (Demirer et al., 2019; Kallus and Zhou, 2018; Chen et al., 2016). As noted
by Kallus and Zhou (2018) and as our experiments confirm, addressing the continuous case
with naive discretization strategies performs poorly. Our first contribution is about data
modeling: we introduce a joint embedding of actions and contexts relying on kernel methods,
which takes into account the continuous nature of actions, leading to rich classes of estimators
that prove to be effective in practice.

In the context of CRM, the problem of estimation is intrinsically related to the problem of
optimization of a non-convex objective function. In our second contribution, we underline
the role of optimization algorithms (Bottou et al., 2013; Swaminathan and Joachims, 2015b).
We believe that this aspect was overlooked, as previous work has mostly studied the
effectiveness of estimation methods regardless of the optimization procedure. In this chapter,
we show that appropriate tools can bring significant benefits. To that effect, we introduce
differentiable estimators based on soft-clipping the importance weights, which are more
amenable to gradient-based optimization than previous hard clipping procedures (Bottou
et al., 2013; Wang et al., 2017). We provide a statistical analysis of our estimator and discuss
its theoretical performance with regards to the literature. We also find that proximal point
algorithms (Rockafellar, 1976) tend to dominate simpler off-the-shelf optimization approaches,
while keeping a reasonable computation cost.

Finally, an open problem in counterfactual reasoning is the difficult question of reliable
evaluation of new policies based on logged data only. Despite significant progress thanks to
various IPS estimators, we believe that this issue is still acute, since we need to be able to
estimate the quality of policies and possibly select among different candidate ones before being
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able to deploy them in practice. Our last contribution is a small step towards solving this
challenge, and consists of a new offline evaluation benchmark along with a new large-scale
dataset, which we call CoCoA, obtained from a real-world system. The key idea is to
introduce importance sampling diagnostics (Owen, 2013) to discard unreliable solutions
along with significance tests to assess improvements to a reference policy. We believe that
this contribution will be useful for the research community; in particular, we are not aware of
similar publicly available large-scale datasets for continuous actions.

2.2. Related Work
A large effort has been devoted to designing CRM estimators that have less variance

than the IPS method, through clipping importance weights (Bottou et al., 2013; Wang et al.,
2017), variance regularization (Swaminathan and Joachims, 2015a), or by leveraging reward
estimators through doubly robust methods (Dudik et al., 2011; Robins and Rotnitzky, 1995).
In order to tackle an overfitting phenomenon termed “propensity overfitting”, Swaminathan
and Joachims (2015b) also consider self-normalized estimators (Owen, 2013). Such estimation
techniques also appear in the context of sequential learning in contextual bandits (Agarwal
et al., 2014; Langford and Zhang, 2008), as well as for off-policy evaluation in reinforcement
learning (Jiang and Li, 2016). In contrast, the setting we consider is not sequential. Moreover,
unlike direct approaches (Dudik et al., 2011) which learn a cost predictor to derive a
deterministic greedy policy, our approach learns a model indirectly by rather minimizing the
policy risk.

While most approaches for counterfactual policy optimization tend to focus on discrete
actions, few works have tackled the continuous action case, again with a focus on estimation
rather than optimization. In particular, propensity scores for continuous actions were
considered by Hirano and Imbens (2004). More recently, evaluation and optimization of
continuous action policies were studied in a non-parametric context by Kallus and Zhou
(2018), and by Demirer et al. (2019) in a semi-parametric setting.

In contrast to these previous methods, (i) we focus on stochastic policies while they
consider deterministic ones, even though the kernel smoothing approach of Kallus and
Zhou (2018) may be interpreted as learning a deterministic policy perturbed by Gaussian
noise. (ii) The terminology of kernels used by Kallus and Zhou (2018) refers to a different
mathematical tool than the kernel embedding used in our work. We use positive definite
kernels to define a nonlinear representation of actions and contexts in order to model the
reward function, whereas Kallus and Zhou (2018) use kernel density estimation to obtain good
importance sampling estimates and not model the reward. Chen et al. (2016) also use a kernel
embedding of contexts in their policy parametrization, while our method jointly models
contexts and actions. Moreover, their method requires computing an n × n Gram matrix,
which does not scale with large datasets; in principle, it should be however possible to modify
their method to handle kernel approximations such as the Nyström method (Williams and
Seeger, 2001). Besides, their learning formulation with a quadratic problem is not compatible
with CRM regularizers introduced by (Swaminathan and Joachims, 2015a,b) which would
change their optimization procedure. Eventually, we note that Krause and Ong (2011) use
similar kernels to ours for jointly modeling contexts and actions, but in the different setting of
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sequential decision making with upper confidence bound strategies. (iii) While Kallus and
Zhou (2018) and Demirer et al. (2019) focus on policy estimation, our work introduces a new
continuous-action data representation and encompasses optimization: in particular, we propose
a new contextual policy parameterization, which leads to significant gains compared to
baselines parametrized policies on the problems we consider, as well as further improvements
related to the optimization strategy. We also note that, apart from Demirer et al. (2019) that
uses an internal offline cross-validation for model selection, previous works did not perform
offline model selection nor evaluation protocols, which are crucial for deploying methods on
real data. We provide a brief summary in Table 2.1 to summarize the key differences with our
work.

Method Stochastic Policy
Parametrization Kernels CRM

Regularizers
Offline evaluation

protocol Large-scale

Chen et al. (2016) ✗ Linear Embedding of contexts ✗ ✗ ✗ \ ✓

Kallus and Zhou (2018) ✗ \ ✓ Linear Kernel Density Estimation ✓ ✗ ✓

Demirer et al. (2019) ✗ Any Not used ✗ ✓ ✓

Ours ✓ CLP Joint embedding of
contexts/actions ✓ ✓ ✓

Table 2.1: Comparison to Chen et al. (2016); Kallus and Zhou (2018); Demirer et al. (2019), CLP refers
to our continuous action model, see section 2.3.1. For discussions on stochastic interpretation of

Kallus and Zhou (2018) and the application of Chen et al. (2016) to large-scale data, see main text.

Optimization methods for learning stochastic policies have been mainly studied in the
context of reinforcement learning through the policy gradient theorem (Ahmed et al., 2019;
Sutton et al., 2000; Williams, 1992). Such methods typically need to observe samples from the
new policy at each optimization step, which is not possible in our setting. Other methods
leverage a form of off-policy estimates during optimization (Kakade and Langford, 2002;
Schulman et al., 2017), but these approaches still require to deploy learned policies at each
step, while we consider objective functions involving only a fixed dataset of collected data.
In the context of CRM, Su et al. (2019) introduce an estimator with a continuous clipping
objective that achieves an improved bias-variance trade-off over the doubly-robust strategy.
Nevertheless, this estimator is non-smooth, unlike our soft-clipping estimator.

2.3. Modeling of Continous Action Policies
We now review the CRM framework, and then present our modelling approach for

policies with continuous actions.

2.3.1. The Counterfactual Loss Predictor (CLP) for Continuous Actions Poli-
cies

We recall that our estimator π̂ is designed by optimizing (1.12) over a class of policies Π.
In this subsection, we discuss how to choose Π when dealing with continuous actions. We
emphasize that when considering continuous action spaces, the choice of policies is more
involved than in the discrete case. One may indeed naively discretize the action space into
buckets and leverage discrete action strategies, but then local information within each bucket
gets lost and it is non-trivial to choose an appropriate bucketization of the action space based
on logged data, which contains non-discrete actions.
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We focus on stochastic policies belonging to certain classes of continuous distributions,
such as Normal or log-Normal. Specifically, we consider a set of context-dependent policies
of the form

ΠΘ =
{
πθ s.t. for any x ∈ X , πθ(·|x) = D(µβ(x), σ2) with θ = (β, σ) ∈ Θ

}
(2.1)

where D(a, b) is a probability distribution with mean a and variance b, such as the Normal
distribution, and Θ is a parameter space.

Here, the parameter space Θ can be written as Θ = Θβ × Θσ. The space Θσ is either
a singleton (if σ is considered as a fixed parameter specified by the user) or R∗

+ (if σ is a
parameter to be optimized). The space Θβ is the parameter space which models the contextual
mean x 7→ µβ(x).

Counterfactual baselines for Θβ only consider contexts Before introducing our flexible
model for Θβ , we consider the following simple baselines that will be compared to our model
in the experimental Section 2.7. Given a context x in X ⊂ Rdx :

• constant: µβ(x) = β (context-independent);

• linear: µβ(x) = ⟨x, β1⟩+ β0 with β = (β0, β1) ∈ Rdx+1;

• poly: µβ(x) = ⟨xx⊤, β1⟩+ β0 with β = (β0, β1) ∈ Rd2x+1.

These baselines require learning the parameters β by using the CRM approach (1.12).
Intuitively, the goal is to find a stochastic policy that is close to the optimal deterministic one
from Eq. (DM). Yet, these approach consider function spaces Θµ of the mean functions µ that
only use the context. While these approaches, adopted by Chen et al. (2016), Kallus and Zhou
(2018) can be effective in simple problems, they may be limited in more difficult scenarios
where the expected cost η∗(x, a) has a complex behavior as a function of a. This motivates
the need for classes of policies which can better capture such variability by considering a joint
model η(x, a) of the cost.

The counterfactual loss predictor (CLP) model for Θβ . Assuming that we are given such
a parametric model ηβ(x, a), which we call loss predictor and will be detailed thereafter, we
parametrize the mean of a stochastic policy by using a soft-argmin operator with temperature
γ > 0:

CLP: µCLP
β (x) =

m∑
i=1

ai
exp(−γηβ(x, ai))∑m
j=1 exp(−γηβ(x, aj))

, (2.2)

where a1, . . . , am ∈ A are anchor points (e.g.,, a regular grid or quantiles of the action space),
and µβ may be viewed here as a smooth approximation of a greedy policy µgreedy(x) =
argmina η(x, a). This allows CLP policies to capture complex behavior of the expected loss
as a function of a. The motivation for introducing a soft-argmin operator is to avoid the
optimization over actions and to make the resulting CRM problem differentiable.

Modeling of the loss predictor ηβ(x, a). The above CLP model is parameterized by ηβ(x, a)
that may be interpreted as a loss predictor. We choose it of the form

ηβ(x, a) = ⟨β, ψ(x, a)⟩
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contexts x ∈ X

actions a ∈ A

K((x, a), (x′, a′))

Joint kernel embedding

ψ(x, a) ∈ Rp

Nyström approximation

ηβ(x, a) = ⟨β, ψ(x, a)⟩

Cost predictor

Figure 2.1: Illustration of the joint kernel embedding for the counterfactual loss predictor (CLP).

for some parameter β ∈ Rp, which norm controls the smoothness of η, and a feature map
ψ(x, a) ∈ Rp that we detail in two parts: a joint kernel embedding between the actions and the
contexts and a Nyström approximation. The complete modeling of ηβ(x, a) is summarized in
Figure 2.1.

1. Joint kernel embedding. In a continuous action problem, a reasonable assumption is that
losses y vary smoothly as a function of actions. Thus, a good choice is to take η in a space
of smooth functions such as the reproducing kernel Hilbert space H (RKHS) defined by a
positive definite kernel (Schölkopf and Smola, 2002), so that one may control the smoothness
of η through regularization with the RKHS norm. More precisely, we consider kernels of the
form

K((x, a), (x′, a′)) = ⟨ψX (x), ψX (x
′)⟩e−α

2
∥a−a′∥2 , (2.3)

where, for simplicity, ψX (x) is either a linear embedding ψX (x) = x or a quadratic one
ψX (x) = (xxT , x), while actions are compared via a Gaussian kernel, allowing to model
complex interactions between contexts and actions.

2. Nyström method and explicit embedding. Since traditional kernel methods lack scalability,
we rely on the classical Nyström approximation (Williams and Seeger, 2001) of the Gaussian
kernel, which provides us a finite-dimensional approximate embedding ψA(a) in Rm such that
e−

α
2
∥a−a′∥2 ≈ ⟨ψA(a), ψA(a

′)⟩ for all actions a, a′. This allows us to build a finite-dimensional
embedding

ψ(x, a) = ψX (x)⊗ ψA(a), (2.4)

where ⊗ denotes the tensorial product, such that

K((x, a), (x′, a′)) ≈ ⟨ψX (x), ψX (x
′)⟩⟨ψA(a), ψA(a

′)⟩ = ⟨ψ(x, a), ψ(x′, a′)⟩.

More precisely, Nyström’s approximation consists of projecting each point from the
RKHS to am-dimensional subspace defined as the span ofm anchor points, representing here
the mapping to the RKHS ofm actions ā1, ā2, . . . , ām of the Nyström dictionaryZ . In practice,
we may choose āi to be equal to the ai in (2.2), since in both cases the goal is to choose a set of
“representative” actions. For one-dimensional actions (A ⊆ R), it is reasonable to consider
a uniform grid, or a non-uniform ones based on quantiles of the empirical distribution of
actions in the dataset. In higher dimensions, one may simply use a K-means algorithms and
assign anchor points to centroids.



2.4. On Optimization Perspectives for CRM 50

From an implementation point of view, Nyström’s approximation considers the embed-
ding ψA(a) = K

−1/2
ZZ KZ(a), where KZZ = [KA(āi, āj)]ij and KZ(a) = [KA(a, āi)]i and KA is

the Gaussian kernel.

The anchor points that we use can be seen as the parameters of an interpolation strategy
defining a smooth function, similar to knots in spline interpolation. Naive discretization
strategies would prevent us from exploiting such a smoothness assumption on the cost with
respect to actions and from exploiting the structure of the action space. Note that Section 2.7
provides a comparison with naive discretization strategies, showing important benefits of the
kernel approach. Our goal was to design a stochastic, computationally tractable, differentiable
approximation of the optimal (but unknown) greedy policy (DM).

Summary of the CLP policy class definition We provide below a shortened description of
the CLP parametrization. In particular the policy class construction requires input parameters
and yields a parametric policy class:

Input: Temperature γ > 0, kernel K, Nyström dictionary Z ⊆ A, parametric
distribution D (such as Normal or log-Normal).

1. Define the d-dimensional feature map ψ as in Eq. (2.4) by using K and Z .
2. For any β ∈ Rd and (x, a) ∈ X ×A, define

ηβ(x, a) = ⟨β, ψ(x, a)⟩ and µCLP
β (x) =

∑
a∈Z

exp(−γηβ(x, a))∑
a′∈Z exp(−γηβ(x, a′))

.

3. Define the policy set

ΠCLP
Θ =

{
π s.t. ∀x ∈ X , π(·|x) = D(µCLP

β (x), σ2), with (β, σ) ∈ Θ
}
.

2.4. On Optimization Perspectives for CRM
Because our models yield non-convex CRM problems, we believe that it is crucial to study

optimization aspects. Here, we introduce a differentiable clipping strategy for importance
weights and discuss optimization algorithms.

2.4.1. Soft Clipping IPS

The classical hard clipping estimator

L̂cIPS(θ) =
1

n

n∑
i=1

yimin {πθ(ai|xi)/π0,i,M} (2.5)

makes the objective function non-differentiable, and yields terms in the objective with clipped
weights to have zero gradient. In other words, a trivial stationary point of the objective
function is that of a stochastic policy that differs enough from the logging policy such that
all importance weights are clipped. To alleviate this issue, we propose a differentiable



2.4. On Optimization Perspectives for CRM 51

logarithmic soft-clipping strategy. Given a threshold parameter M ≥ 0 and an importance
weight wi = πθ(ai|xi)/π0,i, we consider the soft-clipped weights:

ζ(wi,M) =

{
wi if wi ≤M
α(M) log (wi + α(M)−M) otherwise,

(2.6)

where α(M) is such that α(M) log(α(M)) = M , which yields a differentiable operator. We
illustrate the soft clipping expression in Figure 2.2 and give further explanations about the
benefits of clipping strategies in Appendix 2.9.
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w
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c(
w

)

c(w) = min(w, M)
c(w) = (w, M)
c(w) = w
M

Figure 2.2: Different clipping strategies c on the importance weights w. Weights are clipped for
M = 3, the hard clipping c(w) = min(w,M) provides no gradient for w > M , while the soft clipping

c(w) = ζ(w,M) and the unclipped estimators c(w) = w do.

Then, the IPS estimator with soft clipping becomes

L̂scIPS(θ) =
1

n

n∑
i=1

yiζ

(
πθ(ai|xi)
π0,i

,M

)
. (2.7)

We now provide a similar generalization bound to that of Swaminathan and Joachims
(2015a) (for the hard-clipped version) for the variance-regularized objective of this soft-clipped
estimator, justifying its use as a good optimization objective for minimizing the expected risk.
Writing χi(θ) = yiζ

(
πθ(ai|xi)
πθ0

(ai|xi)
,M
)

, we recall the empirical variance with scIPS that is used
for regularization:

V̂ scIPS(θ) =
1

n− 1

n∑
i=1

(χi(θ)− χ̄(θ))2, with χ̄(θ) =
1

n

n∑
i=1

χi(θ). (2.8)

We assume that costs yi ∈ [−1, 0] almost surely, as in (Swaminathan and Joachims, 2015a),
and make the additional assumption that the importance weights πθ(ai|xi)/πθ0(ai|xi) are
upper bounded by a constant W almost surely for all π ∈ Π. This is satisfied, for instance, if
all policies have a given compact support (e.g., actions are constrained to belong to a given
interval) and πθ0 puts mass everywhere in this support.

Proposition 2.4.1 (Generalization bound for L̂scIPS(θ)). Let Θ be a parameter space for the policy
class ΠΘ and πθ0 be a logging policy. Let s0 = (xi, ai, yi)i=1,...,n the logging dataset for which
actions are sampled under πθ0 . Assume that the losses y ∈ [−1, 0] to be bounded a.s. and that the
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importance weights are bounded by W . Then, with probability at least 1− δ, the IPS estimator with
soft clipping (2.7) on n samples from s0 satisfies

∀π ∈ Π, L(θ)≤ L̂scIPS(θ) +O

√ V̂scIPS(θ)
(
Cn(Θ,M) + log 1

δ

)
n

+
S
(
Cn(Θ,M) + log 1

δ

)
n

,
where S=ζ(W,M)=O(logW ), V̂ scIPS(θ) denotes the empirical variance of the cost estimates (1.16),
and Cn(Θ,M) is a complexity measure of the policy class defined in (2.14).

We prove the Proposition 2.4.1 in Appendix 2.9. This generalization error bound motivates
the use of the empirical variance penalization as in Swaminathan and Joachims (2015a) and
shows that minimizing both the empirical risk and penalization of the soft clipped estimator
minimize the true risk of the policy.

Note that while the bound requires importance weights bounded by a constant W , the
bound only scales logarithmically with W when W ≫M , compared to a linear dependence
for IPS. However we gain significant benefits in terms of optimization by having a smooth
objective.

Remark 2.4.1. If costs are in the range [−c, 0], the constant S can be replaced by cS, making the
bound homogeneous in the scale (indeed, the variance term is also scaled by c).

Remark 2.4.2. For a fixed parameterM , the scIPS estimator is less biased than the cIPS. Indeed, we can
bound the importance weights as min{ πθ(a|x)

πθ0
(a|x) ,M} ≤ ζ

(
πθ(a|x)
πθ0

(a|x) ,M
)
≤ πθ(a|x)

πθ0
(a|x) and subsequently

derive the bound on the different biases:∣∣∣Ex,a∼πθ0
(·|x)

[
ymin{ πθ(a|x)

πθ0(a|x)
,M} − y

] ∣∣∣ ≥ ∣∣∣Ex,a∼πθ0
(·|x)

[
yζ

(
πθ(a|x)
πθ0(a|x)

,M

)
− y
] ∣∣∣ ≥ 0

We emphasize however that the M parameter may have different optimal values for both methods, and
that the main motivation for such a clipping strategy is to provide a differentiable estimator which is
not the case for cIPS in areas where all point are clipped.

2.4.2. Proximal Point Algorithms

Non-convex CRM objectives have been optimized with classical gradient-based meth-
ods (Swaminathan and Joachims, 2015a,b) such as L-BFGS (Liu and Nocedal, 1989), or the
stochastic gradient descent approach (Joachims et al., 2018). Proximal point methods are
classical approaches originally designed for convex optimization (Rockafellar, 1976), which
were then found to be useful for nonconvex functions (Fukushima and Mine, 1981; Paquette
et al., 2018). In order to minimize a function L, the main idea is to approximately solve a
sequence of subproblems that are better conditioned than L, such that the sequence of iterates
converges towards a better stationary point of L. More precisely, for our class of parametric
policies, the proximal point method consists of computing a sequence

θ(k) ≈ argmin
θ

(
L(θ) + κ

2
∥θ − θ(k−1)∥22

)
, (2.9)

where L(θ) = L̂(θ) +Ω(θ) and κ > 0 is a constant parameter. The regularization term Ω often
penalizes the variance (Swaminathan and Joachims, 2015b), see Appendix 2.9. The role of the



2.5. Analysis of the Excess Risk 53

quadratic function in (2.9) is to make subproblems “less nonconvex” and for many machine
learning formulations, it is even possible to obtain convex sub-problems with large enough κ
(see Paquette et al., 2018). In this chapter, we consider such a strategy (2.9) with a parameter κ,
which we set to zero only for the last iteration.

Note that the effect of the proximal point algorithm differs from the proximal policy
optimization (PPO) strategy used in reinforcement learning (Schulman et al., 2017), even
though both approaches are related. PPO encourages a new stochastic policy to be close to
a previous one in Kullback-Leibler distance. Whereas the term used in PPO modifies the
objective function (and changes the set of stationary points), the proximal point algorithm
optimizes and finds a stationary point of the original objective L, even with fixed κ.

The proximal point algorithm (PPA) introduces an additional computational cost as it
leads to solving multiple sub-problems instead of a single learning problem. In practice for
10 PPA iterations and with the L-BFGS solver, the computational overhead was about 3× in
comparison to L-BFGS without PPA. This overhead seems to be the price to pay to improve
the test reward and obtain better local optima, as we show in the experimental section 2.7.2.
Nevertheless, we would like to emphasize that computational time is often not critical for the
applications we consider, since optimization is performed offline.

2.5. Analysis of the Excess Risk

In the previous section, we have introduced a new counterfactual estimator L̂scIPS (2.7) of
the risk, which satisfies good optimization properties. Motivated by the generalization bound
in Proposition 2.4.1, for any policy class ΠΘ, we associate L̂scIPS with the data-dependent
regularizer and define the following CRM estimator

θ̂CRM = argmin
θ∈Θ

{
L̂scIPS(θ) + λ

√
V̂ scIPS(θ)

n

}
, (2.10)

where V̂ scIPS(π) is the empirical variance defined in (2.8). In this section, we provide theoretical
guarantees on the excess risk of θ̂CRM , first for any general policy class ΠΘ, then for our newly
introduced policy class ΠCLP

Θ (Section 2.3.1). We now define what is the expected risk of a
model θ ∈ Θ.

Definition 2.5.1 (Excess Risk). Given an optimal model θ∗ ∈ argminθ∈Θ L(θ), we write the
excess risk:

∆(θ) = L(θ)− L(θ∗), (2.11)

We now provide the following high-probability upper-bound on the excess-risk.

Proposition 2.5.1 (Excess risk upper bound). Consider the notations and assumptions of Propo-
sition 2.4.1. Let θ̂CRM be the solution of the CRM problem in Eq. (2.10). Then, with well chosen
parameters λ and M , denoting the variance ν2∗ = Varπθ0

[
πθ∗(a|x)/πθ0(a|x)

]
, with probability at

least 1− δ, the excess risk is upper bounded as:

∆(θ̂CRM ) ≲

√
(1 + ν2∗) log(W + e)

(
Cn(Θ,M) + log 1

δ

)
n

+
log(W + e)(Cn(Θ,M) + log 1

δ )

n
,
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where ≲ hides universal multiplicative constants. In particular, assuming also that πθ0(x|a)−1 are
uniformly bounded, the complexity of the class ΠCLP described in Section 2.3.1, applied with a bounded
kernel and Θ =

{
β ∈ Rm, s.t ∥β∥ ≤ C} ×

{
σ
}

, is of order

Cn(Θ
CLP,M) ≤ O(m log n) ,

where m is the size of the Nyström dictionary and O(·) hides multiplicative constants independent of
n and m (see (2.28)).

The proof and the exact definition of Cn(Θ,M) are provided in Appendix 2.9. Our
analysis relies on Theorem 15 of Maurer and Pontil (2009).

Comparison with related work The closest works are the ones of Chen et al. (2016) and
Kallus and Zhou (2018). Chen et al. (2016) analyze their method for Besov policy classes
Bα

1,∞(Rd). When α → ∞, they obtain a rate of order O(n−1/4). In this case, their setting is
parametric and their rate can be compared to our O(n−1/2) when m is finite. Kallus and
Zhou (2018) provide bounds with respect to general deterministic classes of functions, whose
complexity is measured by their Rademacher complexity. For parametric classes, their excess
risk for an estimated θ̂ is bounded (up to logs) by ∆(θ̂) ≲ h−2n−1/2 + h−1n−1/2 + h2, where h
is a smoothing parameter. By optimizing the bandwidth h = O(n−1/8), their method also
yields a rate of order O(n−1/4).

Yet, a key difference between their setting and ours explains the gap between their rate
O(n−1/4) and O(n−1/2) of Proposition 2.5.1. Both consider deterministic policy classes, while
we only consider stochastic policies. Indeed,W and ν∗ would be unbounded for deterministic
policies in Proposition 2.5.1. Therefore, to leverage deterministic policies, they both need to
smooth their predictions and suffer an additional bias that we do not incur. This is why there
is a difference between their rate and ours. For instance, for stochastic classes with variance
σ2, Kallus and Zhou (2018) would satisfy Rπ̂ ≲ σ−2n−1/2 + σ−1n−1/2 for h ≈ σ, which would
also entail a rate of order O(n−1/2). Interestingly, on the other hand, our approach would
satisfy a rate O(n−1/3) for deterministic policies, i.e., σ2 → 0 (see Appendix 2.9). This may be
explained by the fact that, contrary to Kallus and Zhou (2018); Chen et al. (2016) who only
use it in practice, we consider variance regularization and clipping in our analysis.

Another related work is (Demirer et al., 2019). They obtain an excess risk rate ofO(n−1/2)
when learning deterministic continuous action policies with a policy space of finite and
small VC-dimension. Under a margin condition, as in bandit problems, their rate may be
improved to O(log(n)/n). However, their method significantly differs from ours and Chen
et al. (2016), Kallus and Zhou (2018) because it relies on a two steps plug-in procedure: first
estimate a nuisance function, then learn a policy using with a value function using this
estimate. Eventually, we note that Majzoubi et al. (2020) also enjoys a regret of O(n−1/2)
(up to logarithmic factors) but learns tree policies that are hardly comparable to ours. Both
approaches turn out to perform worse in all our benchmarks, as seen in Section. 2.7.2.

2.6. On Evaluation and Model Selection for Real World Data
The CRM framework helps finding solutions when online experiments are costly, dan-

gerous or raising ethical concerns. As such it needs a reliable validation and evaluation
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procedure before rolling-out any solution in the real world. In the continuous action domain,
previous work have mainly considered semi-simulated scenarios (Bertsimas and McCord,
2018; Kallus and Zhou, 2018), where contexts are taken from supervised datasets but rewards
are synthetically generated. To foster research on practical continuous policy optimization,
we release a new large-scale dataset called CoCoA, which to our knowledge is the first to
provide logged exploration data from a real-world system with continuous actions. Addi-
tionally, we introduce a benchmark protocol for reliably evaluating policies using off-policy
evaluation.

2.6.1. The CoCoADataset

The CoCoAdataset comes from the Criteo online advertising platform which ran an
experiment involving a randomized, continuous policy for real-time bidding. Data has
been properly anonymized so as to not disclose any private information. Each sample
represents a bidding opportunity for which a multi-dimensional context x in Rd is observed
and a continuous action a in R+ has been chosen according to a stochastic policy πθ0 that
is logged along with the reward −y (meaning cost y) in R. The reward represents an
advertising objective such as sales or visits and is jointly caused by the action and context
(a, x). Particular care has been taken to guarantee that each sample (xi, ai, πθ0(ai|xi), yi)
is independent. The goal is to learn a contextual, continuous, stochastic policy πθ(a|x)
that generates more reward in expectation than πθ0 , evaluated offline, while keeping some
exploration (stochastic part). As seen in Table 2.2, a typical feature of this dataset is the
high variance of the cost (V[Y ]), motivating the scale of the dataset N to obtain precise
counterfactual estimates. The link to download the dataset is available in the code repository:
https://github.com/criteo-research/optimization-continuous-action-crm.

Table 2.2: CoCoAdataset summary statistics.

N d E[−Y ] V[Y ] V[A] P(Y ̸= 0)

120.106 3 11.37 9455 .01 .07

2.6.2. Evaluation Protocol for Logged Data

In order to estimate the test performance of a policy on real-world systems, off-policy
evaluation is needed, as we only have access to logged exploration data. Yet, this involves in
practice a number of choices and difficulties, the most documented being i) potentially infinite
variance of IPS estimators (Bottou et al., 2013) and ii) propensity over-fitting (Swaminathan
and Joachims, 2015a,b). The former implies that it can be difficult to accurately assess the
performance of new policies due to large confidence intervals, while the latter may lead to
estimates that reflect large importance weights rather than rewards.

A proper evaluation protocol should therefore guard against such outcomes.

A first, structuring choice is the IPS estimator. While variants of IPS exist to reduce
variance, such as clipped IPS, we found Self-Normalized IPS (SNIPS, Swaminathan and
Joachims, 2015b; Lefortier et al., 2016; Owen, 2013; Nedelec et al., 2017) to be more effective in
practice. Indeed, it avoids the choice of a clipping threshold, generally reduces variance and
is equivariant with respect to translation of the reward.

https://github.com/criteo-research/optimization-continuous-action-crm
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Algorithm 5: Evaluation Protocol
Input: 1− δ: confidence of statistical test (def: 0.95); ν: a max deviance ratio for

effective sample size (def: 0.01);
Output: counterfactual estimation of L(θ) and decision to reject the null hypothesis

{H0: L(θ) ≥ L(θ0)}.
1. Split observation dataset s0 7→ strain, svalid, stest

2. Train θ on strain and tune policy class and optimization hyper-parameters on svalid

(for e.g by internal cross-validation)
3. Estimate effective sample size neff on svalid

if neff
n > ν then
Estimate L̂SNIPS(θ) on stest and test L̂SNIPS(θ) < L̂(θ0) on stest with confidence 1− δ.
If the test is valid, reject H0, otherwise keep it.

else
Keep H0, consider the estimate to be invalid.

end

A second component is the use of importance sampling diagnostics to prevent propensity
over-fitting. Lefortier et al. (2016) propose to check if the empirical average of importance
weights deviates from 1. However, there is no precise guideline based on this quantity
to reject estimates. Instead, we recommend to use a diagnostic on the effective sample size
neff = (

∑n
i=1wi)

2/
∑n

i=1w
2
i , which measures how many samples are actually usable to perform

estimation of the counterfactual estimate; we follow Owen (2013), who recommends to reject
the estimate when the relative effective sample size neff/n is less than 1%.

A third choice is a statistical decision procedure to check if L(θ) < L(θ0). In theory, any
statistical test against a null hypothesis H0: L(θ) ≥ L(θ0) with confidence level 1− δ can be
used.

Finally, we present our protocol in Algorithm 5. Since we cannot evaluate such a protocol
on purely offline data, we performed an empirical evaluation on synthetic setups where
we could analytically design true positive (L(θ) < L(θ0)) and true negative policies. We
discuss in Section 2.7 the concrete parameters of Algorithm 5 and their influence on false
(non-)discovery rates in practice.

Model selection with the offline protocol In order to make realistic evaluations, hyper-
parameter selection is always conducted by estimating the loss of a new policy πθ in a
counterfactual manner. This requires using a validation set (or cross-validation) with propen-
sities obtained from the logging policy πθ0 of the training set. Such estimates are less accurate
than online ones, which would require to gather new data obtained from π, which we assume
is not feasible in real-world scenarios.

To solve this issue, we have chosen to discard unreliable estimates that do not pass
the effective sample size test from Algorithm 5. When doing cross-validation, it implies
discarding folds that do not pass the test, and averaging estimates computed on the remaining
folds. Although this induces a bias in the cross-validation procedure, we have found it to
significantly reduce the variance and dramatically improve the quality of model selection
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when the number of samples is small, especially for the Warfarin dataset in Section 2.7.

2.7. Experimental Setup and Evaluation
We now provide an empirical evaluation of the various aspects of CRM addressed in

this chapter such as policy class modelling (CLP), estimation with soft-clipping, optimization
with PPA, offline model selection and evaluation. We conduct such a study on synthetic and
semi-synthetic datasets and on the real-world CoCoAdataset.

2.7.1. Experimental Validation of the Protocol

In this section, we study the ability of Algorithm 5 to accurately decide if a candidate
policy π is better than a reference logging policy πθ0 (condition L(θ) ≤ L(θ0)) on synthetic
data. Here we simulate logging policy πθ0 being a lognormal distribution of known mean
and variance, and an optimal policy πθ∗ being a Gaussian distribution. We generate a logged
dataset by sampling actions a ∼ πθ0 and trying to evaluate policies π̂θ with costs observed
under the logging policy. We compare the costs predicted using IPS and SNIPS offline metrics
to the online metric as the setup is synthetic, it is then easy to check that indeed they are
better or worse than πθ0 . We compare the IPS and SNIPS estimates along with their level of
confidences and the influence of the effective sample size diagnostic. Offline evaluations of
policies π̂θ illustrated in Figure 2.3 are estimated from logged data (xi, ai, yi, πθ0)i=1...n where
ai ∼ πθ0(·|xi) and where the policy risk would be optimal under the oracle policy πθ∗ .
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Figure 2.3: Illustration of policies: logging policy πθ0 , optimal πθ∗ and example policy π̂θ.

While the goal of counterfactual learning is to find a policy π̂θ which is as close a possible
to the optimal policy πθ∗ , based on samples drawn from a logging policy πθ0 , it is in practice
hard to assess the statistical significance of a policy that is too "far" from the logging policy.
Offline importance sampling estimates are indeed limited when the distribution mismatch
between the evaluated policy and the logging policy (in terms of KL divergenceDKL(πθ0 ||π̂θ))
is large. Therefore we create a setup where we evaluate the quality of offline estimates for
policies (i) "close" to the logging policy (meaning the KL divergence DKL(πθ0 ||π̂θ) is low)
and (ii) "close" to the oracle optimal policy (meaning the KL divergence DKL(πθ∗ ||π̂θ) is low).
In this experiment, we focus on evaluating the ability of the offline protocol to correctly
assess whether L(θ) ≤ L(θ0) or not by comparing to online truth estimates. Specifically, for
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both setups (i) and (ii), we compare the number of False Positives (FP) and False Negatives
(FN) of the two offline protocols for N = 2000 initializations, by adding Gaussian noise to
the parameters of the closed form policies. False negatives are generated when the offline
protocol keeps H0 : L(θ) ≥ L(θ0) while the online evaluation reveals that L(θ) ≤ L(θ0), while
false positives are generated in the opposite case when the protocol rejects H0 while it is true.
We also show histograms of the differences between online and offline boundary decisions
for (L(θ) < L(θ0)), using bootstrapped distribution of SNIPS estimates to build confidence
intervals.

Validation of the use of SNIPS estimates for the offline protocol. To assess the performance
of our evaluation protocol, we first compare the use of IPS and SNIPS estimates for the offline
evaluation protocol and discard solutions with low importance sampling diagnostics neff

n < ν
with the recommended value ν = 0.01 from Owen (2013). In Table 2.3, we provide an analysis
of false positives and false negatives in both setups. We first observe that for setup (i) the
SNIPS estimates has both fewer false positives and false negatives. Note that is setup is
probably more realistic for real-world applications where we want to ensure incremental
gains over the logging policy. In setup (ii) where importance sampling is more likely to fail
when the evaluated policy is too "far" from the logging policy, we observe that the SNIPS
estimate has a drastically lower number of false negatives than the IPS estimate, though it
slightly has more false positives, thus illustrating how conservative this estimator is.

Table 2.3: Comparison of false positives and false negatives: Perturbation to the logging policy πθ0
(setup (i)) and perturbation to the optimal policy (setup (ii)). The SNIPS estimator yields less FN and
FP on setup (i), while being more effective on setup (ii) as well by inducing a drastically lower FP rate

than IPS and a low FN rate. The effective sample size threshold is fixed at ν = 0.01

Offline Protocol
Setup (i) Setup (ii)

IPS SNIPS IPS SNIPS
π̂θ ⪰ πθ0 Keep H0 π̂θ ⪰ πθ0 Keep H0 π̂θ ⪰ πθ0 Keep H0 π̂ ⪰ πθ0 Keep H0

“Truth” π̂θ ⪰ πθ0 1282 24 1296 10 1565 67 1631 1
Keep H0 19 675 0 694 0 368 6 362

We then provide in Fig. 2.4 histograms of the differences of the upper boundary decisions
between online estimates and bootstrapped offline estimates over all samples for both setups
(i, left) and (ii, right). Both histograms illustrate how the IPS estimate underestimates the
value of the reward with regard to the online estimate, unlike the SNIPS estimates. In the
setup (ii) in particular, the IPS estimate underestimates severely the reward, which may
explain why IPS has lower number of false positives when the evaluated policy is far from the
logging policy. However in both setups, IPS has a higher number of false negatives. We also
observed that our SNIPS estimates were highly correlated to the true (online) reward (average
correlation ξ = .968, 30% higher than IPS, see plots in Appendix 2.9) for the synthetic setups
presented in section 2.7.2, which therefore confirms our findings.

Influence of the effective sample size criteria in the evaluation protocol In this setup we
vary the effective sample size (ESS) threshold and show in Fig. 2.5 how it influences the
performance of the offline evaluation protocol for the two previously discussed setups where
we consider evaluations of (i) perturbations of the logging policy (left) and (ii) perturbations
of the optimal policy (right) in our synthetic setup. We compute precision, recall and F1 scores
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Figure 2.4: Histogram of differences between online reward and offline lower confidence bound.
Perturbation to the logging policy πθ0 (left), perturbation to the optimal policy π∗ (right). Effective

sample size threshold ν = 0.01

for each threshold values between 0 and 1. One can see that for low threshold values where
no policies are filtered, precision, recall and F1 scores remain unchanged. Once the ESS raises
above a certain threshold, undesirable policies start being filtered but more false negatives are
created when the ESS is too high. Overall, ESS criterion is relevant for both setups. However,
we observe that on simple synthetic setups the effective sample size criterion ν = neff/n is
seldom necessary for policies close to the logging policy (πθ ≈ πθ0). Conversely, for policies
which are not close to the logging policy the standard statistical significance testing at 1− δ
level was by itself not enough to guarantee a low false discovery rate (FDR) which justified
the use of ν. Adjusting the effective sample size can therefore influence the performance of
the protocol (see Appendix 2.9 for further illustrations of importance sampling diagnostics in
what-if simulations).
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Figure 2.5: Precision, recall and F1 score varying with the ESS threshold on synthetic setups (i) and
(ii). Setup (i) perturbation of the logging policy (left) and setup (ii) perturbation to the optimal policy

(right). The ESS threshold can maximize the F1 score.

2.7.2. Experimental Evaluation of the Continuous Modelling and the Optimization
Perspectives

In this section we introduce our empirical settings for evaluation and present our
proposed CLP policy parametrization, and the influence of optimization in counterfactural
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risk minimization problems.

Experimental Setup
We present the synthetic potential prediction setup, a semi-synthetic setup as well as our

real-world setup.

Synthetic potential prediction. We introduce simple synthetic environments with the
following generative process: an unobserved random group index g in G is drawn, which
influences the drawing of a context x and of an unobserved “potential” p in R, according to a
joint conditional distribution PX ,P |G . Intuitively, the potential p may be compared to users
a priori responsiveness to a treatment. The observed reward −y is then a function of the
context x, action a, and potential p. The causal graph corresponding to this process is given
in Figure 2.6.

A Y PX G
actioncontext outcome group label

π

Figure 2.6: Causal Graph of the synthetic setting. A denotes action, X context, G unobserved group
label, Y outcome and P unobserved potentials. Unobserved elements are dotted.

Then, we generate three datasets (“noisymoons, noisycircles, and anisotropic”, abbre-
viated respect. “moons, circles, and GMM” in Table 2.4 and illustrated in Figure 2.7, with
two-dimensional contexts on 2 or 3 groups and different choices of PX ,P |G .

noisymoons noisycircles anisotropic

Figure 2.7: Contexts (points in R2), and potentials represented by a color map for the synthetic
datasets. Learned policies should vary with the context to adapt to the underlying potentials.

The goal is then to find a model θ associated to a policy πθ(a|x) that maximizes reward by
adapting to an unobserved potential. For our experiments, potentials are normally distributed
conditionally on the group index, p|g ∼ N (µg, σ

2). As many real-world applications feature
a reward function that increases first with the action up to a peak and finally drops, we have
chosen a piecewise linear function peaked at a = p (see Appendix 2.9, Figure 2.18), that
mimics reward over the CoCoAdataset presented in Section 2.6. In bidding applications, a
potential may represent an unknown true value for an advertisement, and the reward is then
maximized when the bid (action) matches this value. In medicine, increasing drug dosage
may increase treatment effectiveness but if dosage exceeds a threshold, secondary effects may
appear and eclipse benefits (Barnes and Eltherington, 1966).

vs.
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Semi-synthetic setting with medical data. We follow the setup of Kallus and Zhou (2018)
using a dataset on dosage of the Warfarin blood thinner drug (War, 2009). The dataset consists
of covariates about patients along with a dosage treatment prescription by a medical expert,
which is a scalar value and thus makes the setting useful for continuous action modelling.
While the dataset is supervised, we simulate a contextual bandit environment by using a
hand-crafted reward function that is maximal for actions a that are within 10% of the expert’s
therapeutic drug dosage, following Kallus and Zhou (2018).

Specifically, the semi-synthetic cost inputs prescriptions from medical experts to ob-
tain y(a, x) = max(|a − t∗| − 0.1t∗, 0), so as to mimic the expert prediction. The logging
policy πθ0 samples actions a ∼ πθ0 contextually to a patient’s body mass index (BMI) score
ZBMI = xBMI−µBMI

σBMI
and can be analytically written with i.i.d noise e ∼ N (0, 1), moments of the

therapeutic dose distribution µ∗T , σ∗T such that a = µ∗T + σ∗T
√
θZBMI + σ∗T

√
1− θε (θ = 0.5

in the setup of Kallus and Zhou (2018)). The logging probability density function thus is a
continuous density of a standard normal distribution over the quantity a−µ∗

T+σ∗
T

√
θZBMI

σ∗
T

√
1−θ

.

Evaluation methodology For synthetic datasets, we generate training, validation, and
test sets of size 10 000 each. For the CoCoA dataset, we consider a 50%-25%-25% training-
validation-test sets. We then run each method with 5 different random intializations such that
the initial policy is close to the logging policy. Hyperparameters are selected on a validation
set with logged bandit feedback as explained in Algorithm 5. We use an offline SNIPS estimate
of the obtained policies, while discarding solutions deemed unsafe with the importance
sampling diagnostic. On the semi-synthetic Warfarin dataset we used a cross-validation
procedure to improve model selection due to the low dataset size. For estimating the final test
performance and confidence intervals on synthetic and on semi-synthetic datasets, we use an
online estimate by leveraging the known reward function and taking a Monte Carlo average
with 100 action samples per context: this accounts for the randomness of the policy itself over
given fixed samples. For offline estimates we leverage the randomness across samples to build
confidence intervals: we use a 100-fold bootstrap and take percentiles of the distribution of
rewards. For the CoCoA dataset, we report SNIPS estimates for the test metrics.

Empirical Evaluation
We now evaluate our proposed CLP policy parametrization and the influence of opti-

mization in counterfactural risk minimization problems.

Continuous action space requires more than naive discretization. In Figure 2.8, we compare
our continuous parametrization to discretization strategies that bucketize the action space
and consider stochastic discrete-action policies on the resulting buckets, using IPS and SDM.
We add a minimal amount of noise to the deterministic DM in order to pass the neff/n > ν
validation criterion, and experimented different hyperparameters and models which were
selected with the offline evaluation procedure. On all synthetic datasets, the CLP continuous
modeling associated to the IPS perform significantly better than discrete approaches (see also
Appendix 2.9), across all choices considered for the number of anchor points/buckets. To
achieve a reasonable performance, naive discretization strategies require a much finer grid,
and are thus also more computationally costly. The plots also show that our (stochastic) direct
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method strategy, where we use the same parametrization is overall outperformed by the CLP
parametrization combined to IPS, highlighting a benefit of using counterfactual methods
compared to a direct fit to observed rewards.
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Figure 2.8: Continuous vs discretization strategies. Test rewards on NoisyMoons dataset with varying
numbers of anchor points for our continuous parametrization for IPS and SDM, versus naive

discretization with softmax policies. Note that few anchor points are sufficient to achieve good results
on this dataset; this is not the case for more complicated ones (e.g.,, Warfarin requires at least 15

anchor points).

Counterfactual cost predictor (CLP) provides a competitive parameterization for continu-
ous-action policy learning. We compare our CLP modelling approach to other parameter-
ized modelings (constant, linear and non-linear described in Section 2.3.1) on our synthetic
and semi-synthetic setups described in Section 2.7.2 as well as the CoCoAdataset presented
in Section 2.6.1.

In Table 2.4, we show a comparison of test rewards for different contextual modellings
(associated to different parametric policy classes). We show the performance and the associated
variance of the best policy obtained with the offline model selection procedure (Section 2.6.2).
Specifically, we consider a grid of hyperparameters and optimized the associated CRM
problem with the PPA algorithm (Section 2.4.2). We report here the performances of scIPS
and SNIPS estimators. For the Warfarin dataset, following Kallus and Zhou (2018), we only
consider the linear context parametrization baseline, since the dataset has categorical features
and higher-dimensional contexts. Overall, we find our CLP parameterization to improve over
all other contextual modellings, which highlights the effectiveness of the cost predictor at
exploiting the continuous action structure. As all the methods here have the same sample
efficiency, the superior performance of our method can be imputed to the richer policy class
we use and which better models the dependency of contexts and actions that may reduce
the approximation error. We can also draw another conclusion: unlike synthetic setups, it is
harder to obtain policies that beat the logging policy with large statistical significance on the
CoCoAdataset where the logging policy already makes a satisfactory baseline for real-world
deployment. Only CLP passes the significance test on this dataset. This corroborates the
need for offline evaluation procedures, which were absent from previous works.
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Table 2.4: Test rewards (higher the better) for several contextual modellings (see main text for details).

Noisycircles NoisyMoons Anisotropic Warfarin CoCoA
Logging policy πθ0 0.5301 0.5301 0.4533 -13.377 11.34

scIPS

Constant 0.6115± 0.0000 0.6116± 0.0000 0.6026± 0.0000 −8.964± 0.001 11.36± 0.13
Linear 0.6113± 0.0001 0.7326± 0.0001 0.7638± 0.0005 −12.857± 0.002 11.35± 0.02
Poly 0.6959± 0.0001 0.7281± 0.0001 0.7448± 0.0008 - 10.36± 0.11
CLP 0.7674± 0.0008 0.7805± 0.0004 0.7703± 0.0002 -8.720± 0.001 11.44∗ ± 0.10

SNIPS

Constant 0.6115± 0.0001 0.6115± 0.0001 0.5930± 0.0001 −9.511± 0.001 11.32± 0.13
Linear 0.6115± 0.0001 0.7360± 0.0001 0.7103± 0.0003 −10.583± 0.005 10.34± 0.12
Poly 0.6969± 0.0001 0.7370± 0.0001 0.5801± 0.0002 - 11.13± 0.08
CLP 0.6972± 0.0001 0.74091± 0.0004 0.7899± 0.0002 -9.161± 0.001 11.48∗ ± 0.14

Soft-clipping improves performance of the counterfactual policy learning. Figure 2.9
shows the improvements in test reward of our optimization-driven strategies for the soft-
clipping estimator for the synthetic datasets (see also Appendix 2.9). The points correspond
to different choices of the clipping parameter M , models and initialization, with the rest of
the hyper-parameters optimized on the validation set using the offline evaluation protocol.
This plot also shows that soft clipping provides benefits over hard clipping, perhaps thanks to
a more favorable optimization landscape. Overall, these figures confirm that the optimization
perspective is important when considering CRM problems.
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Figure 2.9: Influence of soft-clipping. Relative improvements in the test performance for soft- vs
hard-clipping on synthetic datasets. The points correspond to different choices of the clipping

parameter, models and initialization.

Soft-clipping improves or competes with other importance weighting transformation
strategies. We also experiment on the synthetic datasets comparing our soft clipping
approach with other methods which focus is to improve upon the classic clipping strategy for
the same optimization purposes. Notably, we consider the (Metelli et al., 2021) method which
we adapt to our continuous modeling strategy to enable fair comparison. Moreover, we also
added the SWITCH (Wang et al., 2017) as well as the CAB (Su et al., 2019) methods. However,
both methods use a direct method term in their estimation, which is difficult to adapt for
stochastic policies with continuous actions, as explained in our discussions on doubly robust
estimators (see Appendix 2.9). Therefore, we considered discretized strategies and compared
them with soft clipped estimator applied to discretized policies. For the discretized strategies,
we have used the same anchoring strategies as described before, namely using empirical
quantiles of the logged actions (for 1D actions), and have optimized the number of anchor
points along with the other hyperparameters using the offline evaluation protocol. We
see overall in Table 2.5 that our soft-clipping strategy provides satisfactory performance or
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improves upon all weight transforming strategies on the synthetic datasets.

Noisymoons Noisycircles Anisotropic
Logging policy πθ0 0.5301 0.5301 0.4533

(Wang et al., 2017) (discrete) 0.5786± 0.0025 0.5520± 0.0026 0.5741± 0.0024

(Su et al., 2019) (discrete) 0.5761± 0.0024 0.5534± 0.0025 0.5705± 0.0021

scIPS (discrete) 0.5888± 0.0022 0.5637± 0.0024 0.5941± 0.0019

Metelli et al. (2021) (CLP) 0.7244± 0.0005 0.7189± 0.0004 0.7739± 0.0008

scIPS (CLP) 0.7674± 0.0008 0.7805± 0.0004 0.7703± 0.0002

Table 2.5: Comparison of importance weight transformations on the synthetic datasets, for discretized
strategies and for continuous action policies.

Proximal point algorithm (PPA) influences optimization of non-convex CRM objective
functions and policy learning performance. We illustrate in Figure 2.10 the improvements
in test reward and in training objective of our optimization-driven strategies with the use
of the proximal point algorithm (see also Appendix 2.9). Here, each point compares the
test metric for fixed models as well as initialization seeds, while optimizing the remaining
hyperparameters on the validation set with the offline evaluation protocol. Figure 2.10 (left)
illustrates the benefits of the proximal point method when optimizing the (non-convex) CRM
objective in a wide range of hyperparameter configurations, while Figure 2.10 (center) shows
that in many cases this improves the test reward as well. In our experiments, we have chosen
L-BFGS because it was performing best among the solvers we tried (nonlinear conjugate
gradient (CG) and Newton) and used 10 PPA iterations. For further information, Figure 2.10
(right) presents a comparison between CG and L-BFGS for different parameters κ and number
of iterations. As for computational time, for 10 PPA iterations, the computational overhead
was about 3× in comparison to L-BFGS without PPA. This overhead seems to be the price
to pay to improve the test reward and obtain better local optima. Overall, these figures
confirm that the proximal point algorithm improves performance in CRM optimization
problems.

The scIPS estimator along with CLP parametrization and PPA optimization improves upon
previous state of the art methods. We also provide a baseline comparison to stochastic
direct methods, to Chen et al. (2016) using their surrogate loss formulation for continous
actions, to Kallus and Zhou (2018) who propose a counterfactual method using kernel density
estimation. Their approach is based on an automatic kernel bandwidth selection procedure
which did not perform well on our datasets except Warfarin; instead, we select the best
bandwidth on a grid through cross-validation and selecting it through our offline protocol.
We also investigate their self-normalized (SN) variant, which is presented in their paper but
not used in their experiments; it turned out to have lower performances in practice. Moreover,
we experimented using the generic doubly robust method from Demirer et al. (2019) but
could not reach satisfactory results using the parameters and feature maps that were used
in their empirical section and with the specific closed form estimators for their applications.
Nevertheless, by adapting their method with more elaborated models and feature maps, we
managed to obtain performances beating the logging policy; these modifications would make
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Figure 2.10: Influence of proximal point optimization. Relative improvements in the training objective
w and w/o using the proximal point method (left), relative improvements in the test performance w
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promising directions for future research venues. We eventually also compare to Majzoubi et al.
(2020) who propose an offline variant of their contextual bandits algorithm for continuous
actions. We used the code of the authors and obtained poor performances with their offline
variant but achieved satisfactory performances with their online algorithm, that we provide
as a comparison but which does not compare to all previous offline methods. We do not
provide results on their method for the CoCoAdataset as we could not access the logged
propensities to use the offline evaluation protocol. For the SDM on CoCoA, we did not manage
to simultaneously pass the ESS diagnostic and achieve statistical significance, probably due
to the noise and variance of the dataset.

Noisycircles NoisyMoons Anisotropic Warfarin CoCoA
Stochastic Direct Method 0.6205± 0.0004 0.7225± 0.0006 0.6383± 0.0003 −9.714± 0.013 -

Chen et al. (2016) 0.608± 0.0002 0.645± 0.0003 0.754± 0.0002 −9.407± 0.004 11.03± 0.15

Kallus and Zhou (2018) 0.612± 0.0001 0.734± 0.0001 0.785± 0.0002 −10.19∗ 11.38± 0.07

SN-Kallus and Zhou (2018) 0.609± 0.0001 0.595± 0.0001 0.652± 0.0001 −12.569± 0.001 9.14± 0.94

Majzoubi et al. (2020) offline 0.589± 0.0011 0.592± 0.0011 0.569± 0.0012 −12.236± 0.2548 -
Ours 0.767± 0.0008 0.781± 0.0004 0.770± 0.0002 -8.720± 0.001 11.44∗ ± 0.10

Majzoubi et al. (2020) online 0.713± 0.0041 0.710± 0.0026 0.771± 0.011 −11.672± 0.221 -

Table 2.6: Test rewards (higher the better) for previous methods for the logged bandit problem with
continuous actions

2.8. Discussions
In this chapter, we addressed the problem of counterfactual learning of stochastic policies

on real data with continuous actions. This raises several challenges about different steps of
the CRM pipeline such as (i) modelization, (ii) optimization, and (iii) evaluation. First, we
propose a new parametrization based on a joint kernel embedding of contexts and actions,
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showing competitive performance. Second, we underline the importance of optimization in
CRM formulations with soft-clipping and proximal point methods. We provide statistical
guarantees of our estimator and the policy class we introduced. Third, we propose an offline
evaluation protocol and a new large-scale dataset, which, to the best of our knowledge, is
the first with real-world logged propensities and continuous actions. For future research
directions, we would like to discuss the doubly robust estimator (which achieves the best
results in the discrete action case) with the CLP parametrization of stochastic policies with
continuous actions, as well as further optimization perspectives and the offline model
selection.

Doubly-robust estimators for continuous action policies While Demirer et al. (2019)
provide a doubly robust (DR) estimator on continuous action using a semi-parametric model
of the policy value function, we did not propose a doubly-robust estimator along with our
CLP modelling. Indeed, their policy learning is performed in two stages (i) estimate a
doubly robust parameter θDR(x, a, r) in the semi-parametric model of the value function
E[y|a, x] = V (a, x) = ⟨θ∗(x), ϕ(a, x)⟩ and (ii) learn a policy in the empirical Monte Carlo
estimate of the policy value by solving

min
π∈Π

{
V̂ DR(π) :=

1

n

n∑
i=1

⟨θ̂DR(xi, ai, ri), ϕ(π(xi), xi)⟩
}
.

The doubly robust estimation is performed with respect to the first parameter learned in (i)
for the value function, while we follow the CRM setting Swaminathan and Joachims (2015a)
and directly derive estimators of the policy value (risk) itself, which would correspond to the
phase (ii). To derive an estimate a DR estimator of such policy values, we tried extending the
standard DR approach for discrete actions from Dudik et al. (2011) to continuous actions by
using our anchors points, but these worked poorly in practice, as detailed in Appendix 2.9.
Actually, a proper DR method for estimating the expectation of a policy risk likely requires
new techniques for dealing with integration over the training policy in the direct method
term, which is non-trivial and goes beyond the scope of this work. We hope to be able to do
this in the future.

On further optimization perspectives and offline model selection As mentioned in Section
2.4, our use of the proximal point algorithm differs from approaches that enhance policies to
stay close to the logging policies which modify the objective function as in (Schulman et al.,
2017) in reinforcement learning. Another avenue for future work would be to investigate
distributionnally robust methods that do such modifications of the objective function or add
constraints on the distribution being optimized. The policy thereof obtained would thus be
closer to the logging policy in the CRM context. Moreover, as we showed in Section 2.6.2 with
importance sampling estimates and diagnostics, the offline decision becomes less statistically
significant as the evaluated policy is far from the logging policy. Investigating how the
distributionally robust optimization would yield better CRM solutions with regards to the
offline evaluation protocol would make an interesting future direction of research.
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2.9. Appendices
This appendix is organized as follows. Appendix 2.9 provides motivation for counter-

factual methods as opposed to direct approaches. Appendix 2.9 motivates the need for
clipping strategies on real datasets. Appendix 2.9 motivates the offline evaluation protocol
with experiments justifying the need for appropriate diagnostics and statistical testing for
importance sampling. Appendix 2.9 provides the omitted proofs and details of Section2.4
and 2.5. Then, Appendix 2.9 is devoted to experimental details that were omitted from
the main chapter for space limitation reasons, and which are important for reproducing
our results (see also the code provided with the submission). In Appendix 2.9, we present
additional experimental results to those in the main chapter.

2.10. Motivation for Counterfactual Methods
Direct methods (DM) learns a reward/cost predictor over the joint context-action space

X ×A but ignore the potential mismatch between the evaluated policy and the logging policy
and πθ0 . When the logged data does not cover the joint context-action spaceX ×A sufficiently,
direct methods rather fit the region where the data has been sampled and may therefore
lead to overfitting (Bottou et al., 2013; Dudik et al., 2011; Swaminathan and Joachims, 2015b).
Counterfactual methods instead learn probability distributions directly with a re-weighting
procedure which allow them to fit the context-action space even with fewer samples.

In this toy setting we aim to illustrate this phenomenon for the DM and the counterfactual
method. We create a synthetic ’Chess’ environment of uni-dimensional contexts and actions
where the logging policy purposely covers only a small area of the action space, as illustrated
in Fig. 2.11. The reward function is either 0, 0.5 or 1 in some areas which follow a chess
pattern. We use a lognormal logging policy which is peaked in low action values but still has
a common support with the policies we optimize using the CRM or the DM.
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Figure 2.11: ’Chess’ toy synthetic setting (left) and lognormal logging policy (right).

Having set that environment and the logging policy, we illustrate in Fig. 2.12 the logging
dataset, the actions sampled by the policy learned by a Direct Method and eventually the
actions sampled by a counterfactual IPS estimator. To assess a fair comparison between the
two methods, we use the same continuous action modelling with the same parameters (CLP
parametrization with m = 5 anchor points).

This toy example illustrate the mentioned phenomenon in how the counterfactual
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Figure 2.12: Logged data (left), action sampled by direct method (middle) and action sampled by
counterfactual policy.

estimator learns a re-balanced distribution that maps the contexts to the actions generating
higher rewards than the DM. The latter only learns a mapping that is close to the actions
sampled by the logging and only covers a smaller set of actions.

2.11. Motivation for Clipped Estimators
In this section we provide a motivation example for clipping strategies in counterfactual

systems in a toy example.

In Figure 2.13 we provide an example of large variance and loss overfitting problem.

We recall the data generation: a hidden group label g in G is drawn, and influences the
associated context distribution x and of an unobserved potential p in R, according to a joint
conditional distribution PX,P |G The observed reward r is then a function of the context x,
action a, and potential p. Here, we design one outlier (big red dark dot on Figure 2.13 left).
This point has a noisy reward r, higher than neighbors, and a potential p high as its neighbors
have a low potential. We artificially added a noise in the reward function f that can be written
as:

r = f(a, x, p) + ε, ε ∼ N (0, 1)

As explained in Section 2.7.2, the reward function is a linear function, with its maximum
localized at the point x = p(x), i.e. at the potential sampled. The observability of the potential
p is only through this reward function f . Hereafter, we compare the optimal policy computed,
using different types of estimators.

The task is to predict the high potentials (red circles) and low potentials (blue circles) in
the ground truth data (left). Unfortunately, a rare event sample with high potential is put in
the low potential cluster (big dark red dot). The action taken by the logging policy is low
while the reward is high: this sample is an outlier because it has a high reward while being a
high potential that has been predicted with a low action. The resulting unclipped estimator
is biased and overfits this high reward/low propensity sample. The rewards of the points
around this outlier are low as the diameter of the points in the middle figure show. Inversely,
clipped estimator with soft-clipping succeeds to learn the potential distributions, does not
overfit the outlier, and has larger rewards than the clipping policies as the diameter of the
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Figure 2.13: High variance and loss overfitting. Unlikely (π0,i ≈ 0) sample (x1, x2) = (0.6, 0.) with
high reward r (left) results in larger variance and loss overfitting for the unclipped estimator (middle)

unlike clipped estimator (right).

points show.

2.12. Motivation for Offline Evaluation Protocol
In this part we demonstrate the offline/online correlation of the estimator we use for real-

world systems and for validation of our methods even in synthetic and semi-synthetic setups.
We provide further explanations of the necessity of importance sampling diagnostics and we
perform experiments to empirically assess the rate of false discoveries of our protocol.

2.12.1. Correlation of Self-Normalized Importance Sampling with Online Re-
wards

We show in Figures 2.14,2.16,2.15 comparisons of IPS and SNIPS against an on-policy
estimate of the reward for policies obtained from our experiments for linear and non-linear
contextual modellings on the synthetic datasets, where policies can be directly evaluated
online. Each point represents an experiment for a model and a hyperparameter combination.
We measure the R2 score to assess the quality of the estimation, and find that the SNIPS
estimator is indeed more robust and gives a better fit to the on-policy estimate. Note also that
overall the IPS estimates illustrate severe variance compared to the SNIPS estimate. While
SNIPS indeed reduces the variance of the estimate, the bias it introduces does not deteriorate
too much its (positive) correlation with the online evaluation.

These figures further justify the choice of the self-normalized estimator SNIPS (Swami-
nathan and Joachims, 2015b) for offline evaluation and validation to estimate the reward on
held-out logged bandit data. While the figures show here that the SNIPS estimator achieves a
better bias-variance tradeoff, we note also that the SNIPS estimator has low variance for both
low and high reward policies. It is indeed more robust to the reward distribution thanks to
its equivariance property (Swaminathan and Joachims, 2015b) to additive shifts and does not
require hyperparameter tuning.

2.12.2. Importance Sampling Diagnostics in What-If simulations

Importance sampling estimators rely on weighted observations to address the distribution
mismatch for offline evaluation, which may cause large variance of the estimator. Notably,
when the evaluated policy differs too much from the logging policy, many importance weights
are large and the estimator is inaccurate. We provide here a motivating example to illustrate
the effect of importance sampling diagnostics in a simple scenario.
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Figure 2.14: Correlation between offline and online estimates on Anisotropic synthetic data. Linear
(left) and non-linear (right) contextual modellings. Ideal fit would be y = x.

Figure 2.15: Correlation between offline and online estimates on NoisyCircles synthetic data. Linear
(left) and non-linear (right) contextual modellings. Ideal fit would be y = x.

When evaluating with SNIPS, we consider an “effective sample size” quantity given in
terms of the importance weights wi = πθ(ai|xi)/πθ0(ai|xi) by ne = (

∑n
i=1wi)

2/
∑n

i=1w
2
i .

When this quantity is much smaller than the sample size n, this indicates that only few of
the examples contribute to the estimate, so that the obtained value is likely a poor estimate.
Apart from that, we note also that IPS weights have an expectation of 1 when summed
over the logging policy distribution (that is E(x,a)∼πθ0

[πθ(a|x)/πθ0(a|x)] = 1.). Therefore,
another sanity check, which is valid for any estimator, is to look for the empirical mean
1/n

∑n
i=1 πθ(ai|xi)/π0,i and compare its deviation to 1. In the example below, we illustrate

three diagnostics: (i) the one based on effective sample size described in Section 2.6; (ii)
confidence intervals, and (iii) empirical mean of IPS weights. The three of them coincide and
allow us to remove test estimates when the diagnostics fail.

Example 2.12.1. What-if simulation: For x in Rd, let max(x) = max1≤j≤d xj ; we wish to
estimate E(max(X)) for X i.i.d ∼ πµ = N (µ, σ) where samples are drawn from a logging policy
πθ0 = logN (λ0, σ0) (d = 3, (λ0, σ0) = (1, 1/2)) and analyze parameters µ around the mode of the
logging policy µ0 with fixed variance σ = 1/2. In this parametrized policy example, we see in Fig.
2.17 that ne/n≪ 1, confidence interval range increases and

∑n
i=1

πµ(ai|xi)
π0,i

̸= 1 when the parameter
µ of the policy being evaluated is far away from the logging policy mode µ0.

Note that in this example, the parameterized distribution that is learned (multivariate
Gaussian) is not the same as the parameterized distribution of the logging policy (multivariate
Lognormal). The skewness of the logging policy may explain the asymmetry of the plots.
This points out another practical problem: even though different parametrization of policies
is theoretically possible, the probability density masses overlap is in practice what is most
important to ensure successful importance sampling. This observation is of utmost interest
for real-life applications where the initialization of a policy to be learned needs to be "close"
to the logging policy; otherwise importance sampling may fail from the very first iteration of
an optimization in learning problems.
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Figure 2.16: Correlation between offline and online estimates on NoisyMoons synthetic data. Linear
(left) and non-linear (right) contextual modellings. Ideal fit would be y = x.
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when µ differs too much from µ0, importance sampling fails.

2.13. Analysis of the Excess Risk
In this appendix, we provide details and proofs on the excess risk guarantees that are

given in Section 2.4 and 2.5.

We start by recalling the definitions of an ε covering and the one of our soft-clipping
operator ζ provided in Eq. (2.6).

Definition 2.13.1 (Epsilon Covering and Metric Entropy). An ε-covering is the smallest cardinality
|A0| of a subset A0 ⊆ A such that A is contained in the union of balls of radius ε centered in points in
A0, in the metric induced by a norm ∥ · ∥. The cardinality of the smallest ε-covering is denoted by
H(ε,A, ∥ · ∥) and its logarithm is called the metric entropy.

For any threshold parameter M ≥ 0 and importance weight w ≥ 0, the soft-clip operator
ζ is defined by

ζ(w,M) =

{
w if w ≤M
α(M) log (w + α(M)−M) otherwise

,

where α(M) is such that α(M) log(α(M)) =M .

2.13.1. Omitted Proofs

We start by defining our complexity measure Cn(Θ,M), which will be upper-bounded
by the metric entropy in sup-norm at level ε = 1/n of the following function set,

FΘ,M :=

{
fθ : (x, a, y) 7→ 1 +

y

S
ζ

(
πθ(a|x)
πθ0(a|x)

,M

)
for some θ ∈ Θ

}
, (2.12)
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where S=ζ(W,M). The function set corresponds to clipped prediction errors of policies π
normalized into [0, 1]. More precisely, to define rigorously Cn(Θ,M), we denote for any n ≥ 1
and ε > 0, the complexity of a class F by

H∞(ε,F , n) = sup
(xi,ai,yi)∈(X×A×Y)n

H(ε,F
(
{xi, ai, yi}

)
, ∥ · ∥∞) , (2.13)

where F
(
{xi, ai, yi}

)
=
{(
f(x1, a1, y1), . . . , f(xn, an, yn)

)
, f ∈ F

}
⊆ Rn. Then, Cn(Θ,M) is

defined by
Cn(Θ,M) = logH∞(1/n,FΘ,M , 2n) . (2.14)

We are now ready to prove Proposition 2.4.1 that we restate below.

Proposition 2.4.1 (Generalization bound for L̂scIPS(θ)). Let Θ be a parameter space for the policy
class ΠΘ and πθ0 be a logging policy. Let s0 = (xi, ai, yi)i=1,...,n the logging dataset for which
actions are sampled under πθ0 . Assume that the losses y ∈ [−1, 0] to be bounded a.s. and that the
importance weights are bounded by W . Then, with probability at least 1− δ, the IPS estimator with
soft clipping (2.7) on n samples from s0 satisfies

∀π ∈ Π, L(θ)≤ L̂scIPS(θ) +O

√ V̂scIPS(θ)
(
Cn(Θ,M) + log 1

δ

)
n

+
S
(
Cn(Θ,M) + log 1

δ

)
n

,
where S=ζ(W,M)=O(logW ), V̂ scIPS(θ) denotes the empirical variance of the cost estimates (1.16),
and Cn(Θ,M) is a complexity measure (2.14) of the policy class.

Proof. Let Θ be a parameter space and ΠΘ be a policy class, πθ0 be a logging policy, and
δ > 0. Let M ≥ 0 be a threshold parameter, W ≥ supa,x{πθ(a|x)/πθ0(a|x)} ≥ 0 a bound on
the importance weights, and S = ζ(W,M).

Let first consider the finite setting, in which case Cn(Θ,M) ≤ log |Θ|. Since all functions
in FΘ,M defined in Eq. (2.12) take values in [0, 1], we can apply the concentration bound
of Maurer and Pontil (2009, Corollary 5) to FΘ,M , which yields that with probability at least
1− δ, for any θ ∈ Θ

Ex,θ,y[fθ(x, a, y)]−
1

n

n∑
i=1

fθ(xi, ai, yi) ≤

√
2V̂ scIPS(θ) log(2|Θ|/δ)

n
+

7 log(2|Θ|/δ)
3(n− 1)

, (2.15)

where V̂scIPS(θ) is the sample variance defined in (2.8). Furthermore, note that by construction
of the fθ, for any θ ∈ Θ,

Ex,θ,y[fθ(x, a, y)] = 1 +
LM (θ)

S
and 1

n

n∑
i=1

fθ(xi, ai, yi) = 1 +
L̂scIPS(θ)

S
,

where LM (θ) = Ex,θ,y

[
yζ
(
πθ(a|x)/πθ0(a|x),M

)]
denotes the clipped expected risk of the

policy θ and L̂scIPS(π) is defined in (2.7). Thus, multiplying (2.15) by S and using that
L(θ) ≤ LM (θ) (since y ≤ 0 and ζ(w,M) ≤ w for all w), we get that with probability 1− δ,

L(θ) ≤ L̂scIPS(θ) +

√
2V̂ scIPS(θ) log(2|Θ|/δ)

n
+ S

7 log(2|Θ|/δ)
3(n− 1)

, ∀θ ∈ Θ .
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The finite setting may finally be extended to infinite policy classes by leveraging Maurer and
Pontil (2009, Theorem 6) as in (Swaminathan and Joachims, 2015a). This essentially consists in
replacing |Θ| above with an empirical ℓ∞ covering number ofFΘ,M of sizeH∞(1/n,FΘ,M , 2n).
Note that the number of empirical samples 2n is due to the double-sample method used by
Maurer and Pontil (2009).

We now state the excess risk upper-bound Proposition 2.13.1 and provide the proof.
The following proposition is an intermediate result that will allow us to derive the Proposi-
tion 2.5.1.

Proposition 2.13.1. Consider the notations and assumptions of Proposition 2.4.1. Let θ̂CRM be
the solution of the CRM problem in Eq. (2.10). Let θ∗ ∈ argminθ∈Θ L(θ). Then, the choice
λ = 3

√
3
(
Cn(Θ,M) + log(30/δ)

)1/2 implies with probability at least 1−δ the following upper-bound
on the excess risk

∆(θ̂CRM ) ≤

√
32VM (θ∗)

(
Cn(Θ,M) + log 30

δ

)
n

+
22S

(
Cn(Θ,M) + log 30

δ

)
n− 1

+ hM (θ∗) ,

where V 2
M (θ∗) and hM (θ∗) are the variance and bias of the is the clipped estimator of θ∗ and respectively

defined in (2.16) and (2.19).

Proof. We consider the notations of the proof of Proposition 2.4.1. Fix θ∗ ∈ argminθ∈Θ L(θ).
Applying, Theorem 15 of Maurer and Pontil (2009)1 to the function set FΘ,M defined in (2.12),
we get w.p. 1− δ

Ex,θ0,y

[
fθ̂CRM (x, a, y)

]
− Ex,θ0,y

[
fθ∗(x, a, y)

]
≤

√
32Varx,θ0,y

[
fθ∗(x, a, y)

](
Cn(Θ,M) + log 30

δ

)
n

+
22
(
Cn(Θ,M) + log 30

δ

)
n− 1

.

Using the definition of fθ(x, a, y) (2.12), we have

Ex,θ0,y

[
fθ(x, a, y)

]
= 1 +

LM (θ)

S
and Varx,θ0,y

[
fθ(x, a, y)

]
=
V 2
M (θ)

S2
,

where
V 2
M (θ) = Varx,θ0,y

(
yζ

(
πθ(a|x)
πθ0(a|x)

,M

))
. (2.16)

Substituting into the previous bound, this entails

LM (θ̂CRM )−LM (θ∗) ≤

√
32VM (θ∗)

(
Cn(Θ,M) + log 30

δ

)
n

+
22S

(
Cn(Θ,M) + log 30

δ

)
n− 1

. (2.17)

1Note that in their notation, logMn(Πθ) equals Cn(Θ,M)+ log(10), X is the dataset {(xi, ai, yi)}1≤i≤n where
(xi, ai, yi) is the observational dataset s0, and P (·, µ) is the expectation with respect to one test sample Ex,µ,y[ · ].
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To conclude the proof, it only remains to replace the clipped risk LM with the true risk L. On
the one hand, since the costs y take values into [−1, 0], we have yζ (πθ∗(a|x)/πθ0(a|x),M) ≥
yπθ(a|x)/πθ0(a|x), which yields

L(θ̂CRM ) ≤ LM (θ̂CRM ) . (2.18)

On the other-hand, by defining the bias

hM (θ∗) = Ex,θ0,y

[
yζ

(
M,

πθ∗(a|x)
πθ0(a|x)

)
− yπθ∗(a|x)

πθ0(a|x)

]
(2.19)

we also have−L(θ∗)−hM ≤ −LM (θ∗), which together with (2.17) and (2.18) finally concludes
the proof

L(θ̂CRM )− L(θ∗) ≤

√
32VM (θ∗)

(
Cn(Θ,M) + log 30

δ

)
n

+
22S

(
Cn(Θ,M) + log 30

δ

)
n− 1

+ hM (θ∗) .

We can now use the latter to prove Proposition 2.5.1 that is restated below.

Proposition 2.5.1. Consider the notations and assumptions of Proposition 2.4.1. Let θ̂CRM be the
solution of the CRM problem in Eq. (2.10). Then, with well chosen parameters λ and M , denoting
the variance ν2∗ = Varπθ0

[
πθ∗(a|x)/πθ0(a|x)

]
, with probability at least 1− δ, the excess risk is upper

bounded as:

∆(θ̂CRM ) ≲

√
(1 + ν2∗) log(W + e)

(
Cn(Θ,M) + log 1

δ

)
n

+
log(W + e)(Cn(Θ,M) + log 1

δ )

n
,

where ≲ hides universal multiplicative constants. In particular, assuming also that πθ0(x|a)−1 are
uniformly bounded, the complexity of the class ΠCLP described in Section 2.3.1, applied with a bounded
kernel and Θ =

{
β ∈ Rm, s.t ∥β∥ ≤ C} ×

{
σ
}

, is of order

Cn(Θ
CLP,M) ≤ O(m log n) ,

where m is the size of the Nyström dictionary and O(·) hides multiplicative constants independent of
n and m (see (2.28)).

Proof. We first consider a general policy class Π and some π∗ ∈ Π. In this proof, to ease
the notation, we write Eπθ0

[ · ], Varπθ0
[ · ], and Pπθ0

( · ) to respectively refer to E(x,a,y)∼Pπθ0
[ · ],

Var(x,a,y)∼Pπθ0
[ · ], and P(x,a,y)∼Pπθ0

( · ).

We consider the notation of the proof of Proposition 2.13.1 and start from its risk
upper-bound

L(θ̂CRM )− L(θ∗) ≤

√
32VM (θ∗)

(
Cn(Θ,M) + log 30

δ

)
n

+
22S

(
Cn(Θ,M) + log 30

δ

)
n− 1

+ hM (θ∗) ,

(2.20)
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where we recall, for any threshold M , the definitions of the bias and the variance of the
clipped estimator of θ∗,

hM (θ∗) = Ex,θ0,y

[
y

(
ζ
(πθ∗(a|x)
πθ0(a|x)

,M
)
−πθ∗(a|x)
πθ0(a|x)

)]
and V 2

M (θ∗) = Varx,θ0,y
[
yζ

(
πθ∗(a|x)
πθ0(a|x)

,M

)]
.

Step 1: For any threshold M , upper-bound of the variance VM (θ∗) and the bias hM (θ∗).
By assumption, the (unclipped) variance of πθ∗/πθ0 is bounded and we write

ν2∗ = Varx,θ0,y
[
πθ∗(a|x)
πθ0(a|x)

]
= E(x,a,y)∼Pπθ0

[(
πθ∗(a|x)
πθ0(a|x)

− 1

)2
]
.

First, we bound the clipped variance as

V 2
M (θ∗) = Varx,θ0,y

[
yζ

(
πθ∗(a|x)
πθ0(a|x)

,M

)]
= Ex,θ0,y

[
y2ζ

(
πθ∗(a|x)
πθ0(a|x)

,M

)2
]
− Ex,θ0,y

[
yζ

(
πθ∗(a|x)
πθ0(a|x)

,M

)]2
≤ Ex,θ0,y

[(πθ∗(a|x)
πθ0(a|x)

)2]
− LM (π∗)2 = ν2∗ + 1− LM (θ∗)2 ≤ ν2∗ + 1 . (2.21)

Then, by writing X = πθ∗(a|x)/πθ0(a|x), the bias may be upper-bounded as

hM (θ∗) ≤ Ex,θ0,y

[
X − ζ(X,M)

]
≤ Ex,θ0,y [(X −M)1{X > M}]

≤
∫ ∞

0
Px,θ0,y

(
(X −M)1{X > M} > t

)
dt

≤
∫ ∞

0
Px,θ0,y

(
X −M > t

)
dt =

∫ ∞

0
Px,θ0,y

(
(X − 1)2 > (t+M − 1)2

)
dt

≤
∫ ∞

0

Ex,θ0,y

[
(X − 1)2

]
(t+M − 1)2

dt =
Ex,θ0,y

[
(X − 1)2

]
M − 1

=
ν2∗

M − 1
. (2.22)

Furthermore, if W ≤M then S = ζ(W,M) =W ≤M , else, using α(M) =M/ log(α(M)) ≤
max{M, e} ≤M + e,

S = ζ(W,M) = α(M) log
(
W + α(M)−M

)
≤ (M + e) log(W + e) . (2.23)

Therefore, substituting (2.21), (2.22), and (2.23) into (2.20), yields the following upper-
bound on the excess risk

L(θ̂CRM )− L(θ∗)

≤

√
32(1 + ν2∗)

(
Cn(Θ,M) + log 30

δ

)
n

+
22(M + e) log(W + e)

(
Cn(Θ,M) + log 30

δ

)
n− 1

+
ν2∗

M − 1
.
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We now choose M such that

22(M − 1) log(W + e)
(
Cn(Θ,M) + log 30

δ

)
n− 1

=
ν2∗

M − 1
(2.24)

which is possible since the left term grows from 0 to infinity and the right term decreases
from infinity to 0 for M > 1. Therefore, from the last two terms we eventually have

L(θ̂CRM )−L(θ∗) ≲

√
(1 + ν2∗) log(W + e)

(
Cn(Θ,M) + log 1

δ

)
n

+
log(W + e)(Cn(Θ,M) + log 1

δ )

n
,

(2.25)
where ≲ hides universal multiplicative constants. This concludes the first part of the proof.

Step 2: Evaluating the policy class complexity Cn

(
ΘCLP,M

)
.

In this part, we provide a bound on the metric entropyCn(Θ
CLP,M) = logH∞(1/n,FΠ

ΘCLP , 2n).
We recall that FΠ

ΘCLP is defined in (2.12) and ΠΘCLP is described in Section 2.3.1. More pre-
cisely, let Z ⊆ A be a Nyström dictionary of size m ≥ 1 and γ > 0. Since we use Gaussian
distributions, we have

ΠΘCLP =
{
πβ s.t. for any x ∈ X , πβ(·|x) = N (µCLP

β (x), σ2), with β ∈ Θβ

}
,

where
Θβ =

{
β ∈ Rm, s.t ∥β∥ ≤ C}

where
µCLP
β (x) =

∑
a∈Z

exp(−γηβ(x, a))∑
a′∈Z exp(−γηβ(x, a′))

and ηβ(x, a) = ⟨β, ψ(x, a)⟩ ,

for some embeddingψ described in Section 2.3.1 which satisfies ∥ψ(x, a)∥ ≤ υ for any (x, a). Fix
x ∈ X . Let us show that β 7→ µCLP

β (x) is Lipschitz. Denote by Zβ(x) =
∑

a∈Z exp(−γηβ(x, a))
the normalization factor. We consider the gradient of µCLP

β (x) with regards to β

∂µCLP
β

∂β
(x) =

∑
a∈Z

a

(
ψ(x, a) exp (⟨β, ψ(x, a)⟩)

Zβ(x)

− exp (⟨β, ψ(x, a)⟩)∑a∈Z ψ(x, a) exp (⟨β, ψ(x, a)⟩)
Zβ(x)2

)
.

Taking the norm, and upper-bounding ∥ψ(x, a)∥ ≤ υ and ∥a∥ ≤ αZ , this yields∥∥∥∂µCLP
β

∂β
(x)
∥∥∥ ≤ 2υαZ .

Therefore, β 7→ µCLP
β (x) is 2υαZ -Lipschitz, which implies that

β 7→ πβ(a|x) =
1

σ
√
2π

exp

−1

2

(
a− µCLP

β (x)

σ

)2

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are also Lipschitz with parameter √
2

eπ

υαZ
σ2

. (2.26)

We recall that the metric entropy Cn(Θ
CLP) = logH∞(1/n,FΘCLP , 2n) is applied to the

function class

FΠ
ΘCLP =

{
fβ : (x, a, y) 7→ 1 +

y

S
ζ

(
πβ(a|x)
πθ0(a|x)

,M

)
for some β ∈ ΘCLP

}
.

By assumption, the inverse of the logging policy weights are bounded πθ0(a|x)−1 ≤M0 for
any (x, a) ∈ X × A (as in Kallus and Zhou (2018)). Therefore, together with (2.26), for any
(x, a, y) ∈ X ×A× Y , the function β 7→ fβ(x, a, y) is Lipschitz with parameter√

2

eπ

υαZM0

Sσ2
. (2.27)

Let ε > 0. Because there exists an ε-covering of the ball {β ∈ Rd : ∥β∥ ≤ C} of size (C/ε)d,
together with (2.27), the latter provides a covering of FΘCLP in sup-norm with parameter

ε

√
2

eπ

υαZM0

Sσ2
.

Equalizing this with n−1 and taking the log of the size of the covering entails

Cn(Θ
CLP,M) ≤ d log

(√
2

eπ

CM0υαZn

Sσ2

)
.

Now, we recall that d is the dimension of the embedding ψ, which we model as

ψ(x, a) = ψX (x)⊗ ψA(a)

where ψA(a) ∈ Rm is the embedding obtained by using the Nyström dictionary of size m on
the action space and ψX (x) ∈ RdX is the embedding of the context space X ⊆ Rdx . Typically
dX = d2x + dx + 1 or dX = dx respectively with the polynomial and linear maps considered in
practice. Thus, d = mdX . Substituting the latter into the complexity upper-bound and using
1 ≤ S and M , we finally get

Cn(Θ
CLP,M) ≤ mdX log

(√
2

eπ

CM0υαZn

σ2

)
, (2.28)

where we recall that dX is the dimension of the contextual feature map, C a bound on the
parameter norm β, M0 a bound on πθ0(a|x)−1, υ2 a bound on the kernel, σ2 the variance of
the policies, and αZ a bound on the action norms ∥a∥.
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2.13.2. Discussion: on the Rate Obtained for Deterministic Classes

Consider the deterministic CLP class that assigns any input x to the action µCLP
β (x) defined

in (2.2). Although the chapter focuses on stochastic policies, this appendix provides an
excess-risk upper-bound with respect to this deterministic class.

The latter corresponds to the choice σ = 0 in the CLP policy set defined in Section 2.3.1
and therefore, Proposition 2.5.1 cannot be applied directly. Fix some σ2 > 0 to be optimized
later. For any β ∈ Rm, we denote by L(µCLP

β ) the risk associated with the deterministic policy
a = µCLP

β (x). We also define πCLP
β (·|x) ∼ N (µCLP

β (x), σ2) and note R(πCLP
β ) the expected risk of

the policy πCLP
β as in Introduction 1.4. Then, let θ̂CRM be the counterfactual estimator obtained

by Proposition 2.5.1 on the class ΘCLP = {πCLP
β (·|x)}, with probability 1− δ

L̂(θ̂CRM )− L(µCLP
β ) ≤ L̂(θ̂CRM )−R(πCLP

β ) +R(πCLP
β )− L(µCLP

β )

≤ L̂(θ̂CRM )−R(πCLP
β ) + L0σ

√
2 log

2

δ
,

where we assumed that the risk is L0-Lipschtitz and used that P
(
|X| < σ

√
2 log(2/δ)

)
≤ δ

for X ∼ N (0, σ2). From Proposition 2.5.1, this yields, with probability 1− 2δ

ˆ̂L(θ̂CRM )− L(µCLP
β ) ≲

√
(1 + σ2∗) log(W + e)

(
Cn(Θ

CLP,M) + log 1
δ

)
n

+ L0σ

√
2 log

2

δ
.

Now, note that Cn(Π,M) and log(W ) only yield logarithmic dependence on σ2 and n and
will thus not impact the rate of convergence. The variance σ∗ has a stronger dependence on
σ2 but can be upper-bounded as follows

σ2∗ = Varπθ0

[
πCLP
β (a|x)
πθ0(a|x)

]
=

∫ (
πCLP
β (a|x)− πθ0(a|x)

πθ0(a|x)

)2

πθ0(a|x)da

≤
∫
πCLP
β (a|x)2
πθ0(a|x)

da ≤ 1

M0

∫
πCLP
β (a|x)2da =

1

2σM0
√
π
,

where the last equality is because πCLP
β (·|x) is a Gaussian distribution with variance σ2.

Therefore, keeping only the dependence on σ and n and neglecting log-factors, we get the
high-probability upper-bound

L̂(θ̂CRM )− L(µCLP
β ) ≤ Õ

( 1√
σn

+ σ
)
.

The choice σ = n−1/3 entails a rate of order O(n−1/3).

2.14. Details on the Experiment Setup and Reproducibility
In this section we give additional details on synthetic and semi-synthetic datasets, we

provide details on the evaluation methodology and information for experiment reproducibil-
ity.
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2.14.1. Synthetic and Semi-Synthetic setups

Synthetic setups As many real-world applications feature a reward function that increases
first with the action, then plateaus and finally drops, we have chosen a piecewise linear
function as shown in Fig. 2.18 that mimics reward buckets over the CoCoA dataset presented
in Section 2.6.
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Figure 2.18: Synthetic reward engineering. The synthetic reward (left) is inspired from real-dataset
reward buckets (right).

2.14.2. Reproducibility

We provide code for reproducibility and all experiments were run on a CPU cluster,
each node consisting on 24 CPU cores (2 x Intel(R) Xeon(R) Gold 6146 CPU@ 3.20GHz), with
500GB of RAM.

Policy parametrization. In our experiments, we consider two forms of parametrizations: (i) a
lognormal distribution with θ = (θµ, σ), π(µ,σ) = logN (m, s) with s =

√
log (σ2/µ2 + 1);m =

log(µ) − s2/2, so that Ea∼π(µ,σ)
[a] = µ and Vara∼π(µ,σ)

[a] = σ2; (ii) a normal distribution
π(µ,σ) = N (µ, σ). In both cases, the mean µ may depend on the context (see Section 2.4),
while the standard deviation σ is a learned constant. We add a positivity constraint for σ and
add an entropy regularization term to the objective in order to encourage exploratory policies
and avoid degenerate solutions.

Models. For parametrized distributions, we experimented both with normal and lognormal
distributions on all datasets, and different baseline parameterizations including constant, linear
and quadratic feature maps. We also performed some of our experiments on low-dimensional
datasets with a stratified piece-wise contextual parameterization, which partitions the space
by bucketizing each feature by taking K (for e.g K = 4) quantiles, and taking the cross
product of these partitions for each feature. However this baseline is not scalable for higher
dimensional datasets such as the Warfarin dataset.

Hyperparameters. In Table 2.7 we show the hyperparameters considered to run the ex-
periments to reproduce all the results. Note that the grid of hyperparameters is larger for
synthetic data. For our experiments involving anchor points, we validated the number of
anchor points and kernel bandwidths similarly to other hyperparameters.

2.15. Additional Results and Additional Evaluation Metrics
In this section we provided additional results on both contextual modeling and optimiza-
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Table 2.7: Table of hyperparameters for the Synthetic and CoCoA datasets

Synthetic Warfarin CoCoA
Variance reg. λ {0., 0.001, 0.01, 0.1, 1, 10, 100} {0.00010.0010.010.1} {0., 0.001, 0.1}

Clipping M {1, 1.7, 2.8, 4.6, 7.7, 12.9, 21.5, 35.9, 59.9, 100.0} {1, 2.1, 4.5, 9.5, 20} {1, 2.1, 4.5, 9.5, 10, 20, 100}
Prox. κ {0.001, 0.01, 0.1, 1} {0.001, 0.01, 0.1} {0.001, 0.01, 0.1}

Reg. param. C {0.00001, 0.0001, 0.001, 0.01, 0.1} {0.00001, 0.0001, 0.001, 0.01, 0.1} {0.00001, 0.0001, 0.001, 0.01, 0.1}
Number of anchor points {2, 3, 5, 7, 10} {5, 7, 10, 12, 15, 20} {2, 3, 5}

Softmax γ {1, 10, 100} {1, 5, 10} {0.1, 0.5, 1, 5}

tion driven approaches of CRM.

2.15.1. Continuous vs Discrete strategies in Continuous-Action Space

We provide in Figure 2.19 additional plots for the continuous vs discrete strategies for
the synthetic setups described in Section 2.7.2.
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Figure 2.19: Continuous vs discrete. Test rewards for CLP and (stochastic) direct method (DM) with
Nyström parameterization, versus a discrete approach, with varying numbers of anchor points. We
add a minimal amount of noise to the deterministic DM in order to pass the neff validation criterion.

2.15.2. Optimization Driven Approaches of CRM

In this part we provide additional results on optimization driven approaches of CRM for
the Noisycircles, Anisotropic, Warfarin and CoCoAdatasets.

Both Noisycircles and Anisotropic datasets in Figure 2.20 show the improvements in
test reward and in training objective of our optimization-driven strategies, namely the soft-
clipping estimator and the use of the proximal point algorithm. Overall we see that for
most configurations, the proximal point method better optimizes the objective function and
provides better test performances, while the soft-clipping estimator performs better than its
hard-clipping variant, which may be attributed to the better optimization properties. For
semi-synthetic Warfarin and real-world CoCoA datasets in Figure 2.20 we also show the
improvements in test reward and in training objective of our optimization-driven strategies.
More particularly we demonstrate the effectiveness of proximal point methods on the Warfarin
dataset where most proximal configurations perform better than the base algorithm. Moreover,
soft-clipping strategies perform better than its hard-clipping variant on real-world dataset
with outliers and noises, which demonstrate the effectiveness of this smooth estimator for
real-world setups.

2.15.3. Doubly Robust Estimators

In this section we detail the discussion on doubly robust estimators and the difficulties
that exist to obtain a suitable estimator. In policy based methods for discrete actions, the DR
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estimator takes the form

L̂DR(θ) =
1

n

n∑
i=1

(yi − η̂(xi, ai))
πθ(ai|xi)
π0,i

+
1

n

n∑
i=1

∑
a∈A

η̂(xi, a)πθ(a|xi),

Usually, the DR estimator should only improve on the vanilla IPS estimator thanks to the
lower variance induced by the outcome model η̂. However, in a continuous-action setting
with stochastic policies, the second term becomes Ex∼PX ,a∼π(·|x) [η̂(x, a)], which is intractable
to optimize in closed form since it involves integrating over actions according to π(·|x). Thus,
handling this term requires approximations (as described hereafter), which may overall lead
to poorer performance compared to an IPW estimator that sidesteps the need for such a term.

The difficulty for stochastic policies with continuous actions is to derive an estimator of
the term Ex∼PX ,a∼π(·|x) [η̂(x, a)]. Unlike stochastic policies with discrete actions which allow
to use a discrete summation over the action set, we would need here to compute here an
estimator of the form 1

n

∑n
i=1

∫
a∈A π(a|xi)η̂(xi, a). We note that in the case of deterministic

policy π learning this direct method term would easily boil down to 1
n

∑n
i=1 η̂(xi, π(xi)), and

the DR estimator would be built with smoothing strategies for the IPW term as in (Kallus and
Zhou, 2018).

In our experiments for stochastic policies with one dimensional actions A ⊂ R, we tried
to approximate the direct method term 1

n

∑n
i=1

∫
a∈A π(a|xi)η̂(xi, a) with a finite sum of CDFs

differences over the m anchor points a1, . . . am by computing :

1

n

n∑
i=1

m∑
j=1

∫ aj+1

a=aj

π(a|xi)η̂(xi, aj)

We present a table below of some of the experiments we ran on the synthetic datasets we
proposed, along with an evaluation of the baselines that exist in the litterature for discrete
actions. We see overall that our model improves indeed upon the logging policy, but does not
compare to the performances of the scIPS and SNIPS estimators.

Noisymoons Noisycircles Anisotropic
Logging policy πθ0 0.5301 0.5301 0.4533

Doubly Robust (discrete) 0.5756± 0.0022 0.5500± 0.0024 0.5593± 0.0026

SWITCH (Wang et al., 2017) (discrete) 0.5786± 0.0025 0.5520± 0.0026 0.5741± 0.0024

CAB-DR (Su et al., 2019) (discrete) 0.5683± 0.0023 0.5326± 0.0025 0.5361± 0.0028

Doubly Robust (ours) 0.6115± 0.0001 0.6113± 0.0002 0.5977± 0.0001

Table 2.8: Comparison of doubly robust estimators, discretized strategies and our model which
approximates the direct method term.
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Figure 2.20: Optimization-driven approaches (NoisyCircles, Anisotropic, Warfarin and CoCoA
datasets). Relative improvements in the training objective from using the proximal point method (left),
comparison of test rewards for proximal point vs the simpler gradient-based method (center), and for

soft- vs hard-clipping (right).



3
Sequential Counterfactual Risk

Minimization

Counterfactual Risk Minimization (CRM) is a framework for dealing with the logged
bandit feedback problem, where the goal is to improve a logging policy using offline data.
In this chapter, we explore the case where it is possible to deploy learned policies multiple
times and acquire new data. We extend the CRM principle and its theory to this scenario,
which we call "Sequential Counterfactual Risk Minimization (SCRM)." We introduce a novel
counterfactual estimator and identify conditions that can improve the performance of CRM
in terms of excess risk and regret rates, by using an analysis similar to restart strategies in
accelerated optimization methods. We also provide an empirical evaluation of our method
in both discrete and continuous action settings, and demonstrate the benefits of multiple
deployments of CRM.

This chapter is based on the following material:

H. Zenati, E. Diemert, M. Martin, J. Mairal, and P. Gaillard. Sequential counterfactual
risk minimization. International Conference on Machine Learning (ICML), 2023
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3.1. Introduction
Counterfactual reasoning in the logged bandit problem has become a common task for

practitioners in a wide range of applications such as recommender systems (Swaminathan
and Joachims, 2015a), ad placements (Bottou et al., 2013) or precision medicine (Kallus and
Zhou, 2018). Such a task typically consists in learning an optimal decision policy from logged
contextual features and partial feedbacks induced by predictions from a logging policy. To
do so, the logged data is originally obtained from a randomized data collection experiment.
However, the success of counterfactual risk minimization is highly dependent on the quality
of the logging policy and its ability to sample meaningful actions.

Counterfactual reasoning can be challenging due to large variance issues associated with
counterfactual estimators (Swaminathan and Joachims, 2015b). Additionally, as pointed out
by Bottou et al. (2013), confidence intervals obtained from counterfactual estimates may not be
sufficiently accurate to select a final policy from offline data (Dai et al., 2020). This can occur
when the logging policy does not sufficiently explore the action space. To address this, one
option is to simply collect additional data from the same logging system to increase the sample
size. However, it may be more efficient to use already collected data to design a better data
collection experiment through a sequential design approach (Bottou et al., 2013, see Section
6.4). It is thus appealing to consider successive policy deployments when possible.

We tackle this sequential design problem and are interested in multiple deployments of
the CRM setup of Swaminathan and Joachims (2015a), which we call sequential counterfactual
risk minimization (SCRM). SCRM performs a sequence of data collection experiments by
determining at each round a policy using data samples collected during previous experiments.
The obtained policy is then deployed for the next round to collect additional samples. Such a
sequential decision making system thus entails designing an adaptive learning strategy that
minimizes the excess risk and expected regret of the learner. In contrast to the conservative
learning strategy in CRM, the exploration induced by sequential deployments of enhanced
logging policies should allow for improved excess risk and regret guarantees. Yet, obtaining
such guarantees is nontrivial and we address it in this work.

In order to accomplish this, we first propose a new counterfactual estimator that controls
the variance and analyze its convergence guarantees. Specifically, we obtain an improved
dependence on the variance of importance weights between the optimal and logging policy.
Second, leveraging this estimator and a weak assumption on the concentration of this variance
term, we show how the error bound sequentially concentrates through CRM rollouts. This
allows us to improve the excess risk bounds convergence rate as well as the regret rate. Our
analysis employs methods similar to restart strategies in acceleration methods (Nesterov,
2012) and optimization for strongly convex functions (Boyd and Vandenberghe, 2004). We
also conduct numerical experiments to demonstrate the effectiveness of our method in both
discrete and continuous action settings, and how it improves upon CRM and other existing
methods in the literature.
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3.2. Related Work
Counterfactual learning from logged feedback (Bottou et al., 2013) uses only past

interactions to learn a policy without interacting with the environment. Counterfactual risk
minimization methods (Swaminathan and Joachims, 2015a,b) propose learning formulations
using a variance penalization as in (Maurer and Pontil, 2009) to find policies with minimal
variance. Even so, counterfactual methods remain prone to large variance issues (Dudík
et al., 2014). These problems may arise when the logging policy under-explores the action
space, making it difficult to use importance sampling techniques (Owen, 2013) that are key to
counterfactual reasoning. While one could collect additional data to counter this problem,
our method focuses on sequential deployments (Bottou et al., 2013, see Section 6.4) to collect
data obtained from adaptive policies to explore the action space. Note also that the original
motivation is related but different from the support deficiency problem (Sachdeva et al.,
2020) where the support of the logging policy does not cover the support of the optimal
policy.

Another related literature to our framework is batch bandit methods. Originally intro-
duced by Perchet et al. (2015) and then extended by Gao et al. (2019) in the multi-arm setting,
batch bandit agent take decisions and only observe feedback in batches. This therefore differs
from the classic bandit setting (Auer et al., 2002; Audibert et al., 2007) where rewards are
observed after each action taken by an agent. Extensions to the contextual case have been
proposed by Han et al. (2020) and could easily be kernelized (Valko et al., 2013). The sequential
counterfactual risk minimization problem is thus closely related to this setting. However,
major differences can be noted. First, SCRM does not leverage any problem structure as in
stochastic contextual bandits (Li et al., 2010) by assuming a linear reward function (Chu et al.,
2011; Goldenshluger and Zeevi, 2013; Han et al., 2020) nor uses regression oracles as (Foster
and Rakhlin, 2020; Simchi-Levi and Xu, 2022). Second, deterministic decision rules taken
by bandit agents (Lattimore and Szepesvári, 2020) do not allow for counterfactual reasoning
or causal inference (Peters et al., 2017), unlike our framework which performs sequential
randomized data collection. Third, unlike gradient based methods used in counterfactual
methods with parametric policies, batch bandit methods use zero-order methods to learn
from data and necessitate approximations to be scalable (Calandriello et al., 2020; Zenati et al.,
2022).

The sequential designs that we use are adaptive data collection experiments, which have
been studied by Bakshy et al. (2018); Kasy and Sautmann (2021). Closely related to our
method is policy learning from adaptive data that has been studied by Zhan et al. (2021)
and Bibaut et al. (2021b) in the online setting. In contrast, we consider a batch setting and
our analysis achieve fast rates in more general conditions. Zhan et al. (2021) use a doubly
robust estimator and provide regret guarantees but assume a deterministic lower bound on
the propensity score to control the variance. Instead, our novel counterfactual estimator does
not require such an assumption. Bibaut et al. (2021b) propose a novel maximal inequality
and derive thereof fast rate regret guarantees under an additional margin condition that can
only hold for finite action sets. Our work instead uses a different assumption on the expected
risk, which is similar to Hölderian error bounds in acceleration methods (d’Aspremont et al.,
2021) that are known to be satisfied for a broad class of subanalytic functions (Bolte et al.,
2007).
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In the reinforcement learning literature (Sutton and Barto, 1998), off-policy methods
(Harutyunyan et al., 2016; Munos et al., 2016) evaluate and learn a policy using actions
sampled from a behavior (logging) policy, which is therefore closely related to our setting.
Among methods that have shown to be empirically successful are the PPO (Schulman et al.,
2017) and TRPO (Schulman et al., 2015) algorithms which learn policies using a Kullback-
Leibler distributional constraint to ensure robust learning, which can be compared to our
learning strategy that improves the logging policy at each round. However reinforcement
learning models transitions in the states (contexts) induced by the agent’s actions while bandit
problems like ours assume that actions do not influence the context distribution. This enables
to design algorithms that exploit the problem structure, have theoretical guarantees and can
achieve better performance in practice.

Finally, our method is related to acceleration methods (d’Aspremont et al., 2021) where
current iterates are used as new initial points in the optimization of strongly convex functions
(Boyd and Vandenberghe, 2004). While different schemes use fixed (Powell, 1977) or adaptive
(Nocedal and Wright, 2006; Becker et al., 2011; Nesterov, 2012; Bolte et al., 2007; Gaillard
and Wintenberger, 2018) strategies, our method differs in that it does not consider the same
original setting, does not require the same assumptions nor provides the same guarantees.
Eventually, while current models are also used as new starting points, additional data is
effectively collected in our setting unlike those previous works that do not assume partial
feedbacks as in our case.

3.3. Sequential Designs
In this section, we introduce the (CRM) framework and motivate the use of sequential

designs for (SCRM).

In this section we present a design of data collections that sequentially learn a policy
from logged data in order to deploy it and learn from the newly collected data. Specifically,
we assume that at a round m ∈ {1, . . .M}, a model θm ∈ Θ is deployed and a set sm of
nm observations sm = (xm,i, am,i, ym,i, πm,i)i=1,...,nm is collected thereof, with propensities
πm,i = πθm(am,i|xm,i) to learn a new model θm+1 and reiterate. In this work, we assume
that the loss y is bounded in [−1, 0] as in (Swaminathan and Joachims, 2015a) (note however
that this assumption could be relaxed to bounded losses) and follows a fixed distribution PY .
Next, we will introduce useful definitions.

Definition 3.3.1 (Excess Risk and Expected Regret). Given an optimal model θ∗ ∈ argminθ∈Θ L(θ),
we write for each rollout m the excess risk:

∆m = L(θm)− L(θ∗), (3.1)

and define the expected regret as:

Rn =

M∑
m=0

∆mnm+1. (3.2)

The objective is now to find a sequence of models {θm}m=1...M that have an excess risk and
an expected regret Rn that improve upon CRM guarantees. To do so, we define a sequence of
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minimization problems for m ∈ {1, . . .M}:

θ̂m+1 ∈ argmin
θ∈Θ

Lm(θ), (SCRM)

where Lm is an objective function that we define in Section 3.4.2. Note that in the setting we
consider, samples are i.i.d inside a rollout m but dependencies exist between different sets of
observations. From a causal inference perspective (Peters et al., 2017), this does not incur
an additional bias because of the successive conditioning on past observations. We provide
detailed explanations in Appendix 3.8 on this matter. Note also that the main intuition and
motivation of our work is to shed light on how learning intermediate models θm to adaptively
collect data can improve upon sampling from the same logging system by using the same
total sample size n =

∑m
i=0 nm. To illustrate the learning benefits of SCRM we now provide a

simple example.

Example 3.3.1 (Gaussian policies with quadratic loss). Let us consider Gaussian parametrized
policies πθ = N (θ, σ2) and a loss lt(a) = (a − yt)2 − 1 where yt ∼ N (θ∗, σ2). We illustrate in
Figure 3.1 the evolution of the losses of learned models θm through 15 rollouts with either i) Batch
CRM learning on aggregation of data, being generated by the unique initial logging policy θ0 or ii)
Sequential CRM learning with models θ0, . . . , θm−1 deployed adaptively, with data being generated by
the last learned model θm−1 for the batch m. We see that the models learned with SCRM take larger
optimization steps than the ones with CRM.
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Figure 3.1: Comparison of CRM and SCRM on a simple setting described in Example 3.3.1. The
models learned through CRM using re-deployments of θ0 (left) reach θ∗ slower than SCRM (center)
that uses intermediate deployments θ1, . . . , θM indicated with ’x’ markers and rollout numbers. The

comparison of the evolution of averaged losses (right) over 10 random runs also shows SCRM
converges faster. Here θ∗ = 1, σ = 0.3 and we take M = 15 total rollouts with batches m of size

nm = 100× 2m. The parameter λ is set to its theoretical value.

We summarize our (SCRM) framework in Algorithm 6 with the different blocks exposed
previously. We provide an additional graphical illustration of SCRM compared to CRM
in Appendix 3.8. In the next section we will define counterfactual estimators from the
observations sm at each round and define a learning strategy Lm.

3.4. Variance-Dependent Convergence Guarantees
In this part we aim at providing convergence guarantees of counterfactual learning. We

show how we can obtain a dependency of the excess risk on the variance of importance
weights between the logging model and the optimal model.
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Algorithm 6: Sequential Counterfactual Risk Minimization
Input: Logged observations (x0,i, a0,i, y0,i, π0,i)i=1,...,n0 , parameter λ > 0
for m = 1 to M do

Build Lm from observations sm using Eq. (3.5)
Learn θm+1 using Eq. (SCRM)
Deploy the model θm+1 and collect observations
sm+1 = (xm+1,i, am+1,i, lm+1,i, πm+1,i)i=1,...,nm+1

end

3.4.1. Implicit exploration and controlled variance

We first introduce a new counterfactual estimator. For this, we will require a common
support assumption as in importance sampling methods (Owen, 2013). We will assume that
the policies πθ for θ ∈ Θ have all the same support. We then consider the following estimator
of the risk of a model θ:

L̂IPS-IX
m (θ) =

1

nm

nm∑
i=1

πθ,i
πm,i + απθ,i

ym,i, (3.3)

where πθ,i = πθ(am,i|xm,i) and α is like a clipping parameter which ensures that the modified
propensities πm,i + απθ(am,i|xm,i) are lower bounded. Noting ζi(θ) =

( πθ,i

πm,i+απθ,i
− 1
)
ym,i,

ζ̄(θ) = 1
nm

∑nm
i=1 ζi(θ) we can write the empirical variance estimator as:

V̂ IPS-IX
m (θ) =

1

nm − 1

nm∑
i=1

(ζi(θ)− ζ̄(θ))2. (3.4)

Here, the empirical variance uses a control variate since it uses the expression of ζi(θ)
above instead of ym,i

πθ,i

πm,i+απθ,i
. This allows to improve the depency on the variance in the

excess risk provided in Proposition 3.4.2. Note also that our estimator resembles the implicit
exploration estimator in the EXP3-IX algorithm (Lattimore and Szepesvári, 2020), as our
motivation is to improve the control of the variance.

3.4.2. Learning strategy

Next, we aim in this part to provide a learning objective strategy Lm, as refered to in Eq.
(SCRM). Our approach, like the (CRM) framework, uses the sample variance penalization
principle (Maurer and Pontil, 2009) to learn models that have low expected risk with high
probability. To do so, we first provide an assumption to be used in our generalization error
bound.

Assumption 3.4.1 (Bounded importance weights). For any models θ, θ′ ∈ Θ and any (x, a) ∈
X ×A, we assume πθ(a|x)/πθ′(a|x) ≤W , for some W > 0.

This assumption has been made in previous works (Kallus and Zhou, 2018; Zenati et al.,
2020a) and is reasonable when we consider a bounded parameter space Θ. Next, we state an
error bound for our estimator.
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Proposition 3.4.1 (Generalization Error Bound). Let L̂IPS-IX
m and V̂ IPS-IX

m be the empirical estimators
defined respectively in Eq. (3.3) and Eq. (3.4). Let θ ∈ Θ, δ ∈ (0, 1), and nm ≥ 2. Then, under
Ass. 3.4.1, for λm =

√
18(Cm(Θ) + log(2/δ)), with probability at least 1− δ:

L(θ) ≤ L̂IPS-IX
m (θ) + λm

√
V̂ IPS-IX
m (θ)

nm
+

2λ2mW

nm
+ δm,

whereCm(Θ) is a metric entropy complexity measure defined in App. 3.8 and δm =
√
log(2/δ)/(2nm).

This Proposition is proved in Appendix 3.8 and essentially uses empirical bounds (Maurer
and Pontil, 2009). By minimizing the latter high-probability upper bound, we can find models
θ with guarantees of minimizing the expected risk. Therefore, at each round, we minimize
the following loss:

Lm(θ) = L̂IPS-IX
m (θ) + λm

√
V̂ IPS-IX
m (θ)

nm
, (3.5)

where λm > 0 is a positive parameter. Unlike deterministic decision rules used for example
in UCB-based algorithms (Lattimore and Szepesvári, 2020), the exploration is naturally
guaranteed by the stochasticity of the policies we use.

3.4.3. Excess risk upper bound

Eventually, we establish an upper bound on the excess risk of the IPS-IX estimator for
counterfactual risk minimization using the learning strategy that we just defined. For this,
we require an assumption on the complexity measure.

Assumption 3.4.2. We assume that the set Θ is compact and that there exists d > 0 such that
Cm(Θ) ≤ d log(nm).

This assumption states that the complexity grows logarithmically with the sample size. It
holds for parametric policies so long as the propensities are lower bounded, which is verified
using our estimator. We now state our variance-dependent excess risk bound.

Proposition 3.4.2 (Conservative Excess Risk). Let nm ≥ 1 and θm ∈ Θ. Let sm be a set of nm
samples collected with policy πθm . Then, under Assumptions 3.4.1 and 3.4.2, a minimizer θm+1 of
Eq. (3.5) on the samples sm satisfies the excess risk upper-bound: w.p. 1− δ

∆m+1 = L(θm+1)− L(θ∗)

≲

√
ν2m

d log nm−log δ
nm

+
W 2 +W (d log nm−log δ)

nm
,

where ν2m = Varx,θm

(
πθ∗(a|x)
πθm(a|x)

)
.

The proof is postponed to Appendix 3.8. The modified propensities in IPS-IX as well as
the control variate used in the variance estimator allow us to improve the dependency in ν2m,
compared to ν2m + 1 obtained in previous work (Zenati et al., 2020a). This turns out to be a
crucial point to use these error bounds sequentially as in acceleration methods since νm → 0
if θm → θ∗, as explained in the next section.
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3.5. SCRM Analysis
In this section we provide the main theoretical result of this work on the excess risk and

regret analysis of SCRM. We start by stating an assumption that is common in acceleration
methods (d’Aspremont et al., 2021) with restart strategies (Becker et al., 2011; Nesterov, 2012)
that we will require to achieve the benefits of sequential designs.

Assumption 3.5.1 (Hölderian Error Bound). We assume that there exist γ > 0 and β > 0 such
that for any θ ∈ Θ, there exists θ∗ ∈ argminθ∈Θ L(θ) such that

γVarx,θ

(
πθ∗(x|a)
πθ(x|a)

)
≤ (L(θ)− L(θ∗))β .

Typically, in acceleration methods, Hölderian error bounds (Bolte et al., 2007) are of the
form:

γd(θ, S∗
Θ) ≤ (L(θ)− L(θ∗))β

for someγ, β > 0 and whered(θ, S∗
Θ) is some distance to the optimal set (S∗

Θ = argminθ∈Θ L(θ)).
This bound is akin to a local version of strong convexity (β = 1) or a bounded parameter
space (β = 0) if d is the Euclidean distance. When β ∈ [0, 1], this has also been referred to as
the Łojasiewicz assumption introduced in (Łojasiewicz, 1963, 1993). Notably, it has been used
in online learning (Gaillard and Wintenberger, 2018) to obtain fast rates with restart strategies.
This assumption holds for instance for Example 3.3.1 with β = 1 (see App 3.8). We also
discuss this assumption for distributions in the exponential family in Appendix 3.8 notably
for distributions that have been used practice (Swaminathan and Joachims, 2015b; Kallus and
Zhou, 2018; Zenati et al., 2020a). Next we state our main result that is the acceleration of the
excess risk convergence rate and the regret upper bound of SCRM.

Proposition 3.5.1. Let n0, n ≥ 2 and θ∗ ∈ argminθ L(θ). Let nm = n02
m for m = 0, . . . ,M =⌊

log2(1 +
n
n0
)
⌋
. Then, under Assumptions 3.4.1, 3.4.2 and 3.5.1 with β > 0, the SCRM procedure

(Alg. 6) satisfies the excess risk upper-bound

∆M = L(θM )− L(θ∗) ≤ O
(
n
− 1

2−β log n
)
.

Moreover, the expected regret is bounded as follows:

Rn =
M∑

m=0

∆mnm+1 ≤ O
(
n

1−β
2−β log(n)2

)
.

The proof of our result is detailed in Appendix 3.8.

Discussion This result illustrates that an excess risk of order O
( log(n)

n

)
may be obtained

when β = 1 (which is implied by a local version of strong convexity assumption in acceleration
methods). When β = 0, which merely accounts that the variance of importance weights are
bounded, we simply recover the original rate of CRM of order O(log(n)/

√
n). The SCRM

procedures thus improves the excess risk rate whenever β > 0. It is worth to emphasize that
the knowledge of β is not needed by Alg. 6.
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3.6. Empirical Evaluation
In this section we perform numerical experiments to validate our method in practical

settings. We present the experimental setup as well as experiments comparing SCRM to
related approaches and internal details of the method.

3.6.1. Experimental setup

As our method is able to handle both discrete and continuous actions we experiment
in both settings. We now provide a brief description of the setups, with extensive details
available in Appendix 3.8. 1

Continuous actions We perform evaluation on synthetic problems pertaining to person-
alized pricing problems from (Demirer et al., 2019) (Pricing) and advertising from (Zenati
et al., 2020a) (Advertising). We consider Gaussian policies πθ(·|x) = N (µθ(x), σ

2) with lin-
ear contextual parametrization µθ(x) = θ⊤x and fixed variance σ2 that corresponds to the
exploration budget allowed in the original randomized experiment. The features are up to
10 dimensions and the actions are one-dimensional. We keep the original logging baselines
from the settings and compare results to a skyline supervised model trained on the whole
training data with full information.

Discrete actions We adapt the setup of (Swaminathan and Joachims, 2015a) that transforms
a multilabel classification task into a contextual bandit problem with discrete, combinatorial
action space. We keep the original modeling (akin to CRF) with categorical policies πθ(a|x) ∝
exp(θ⊤(x

⊗
a)). The baseline (resp. skyline) is a supervised, full information model with

identical parameter space than CRM methods trained on 5% (resp. 100%) of the training data.
We consider the class of probabilistic policies that satisfy Assumption 3.5.1 by predicting
actions in an Epsilon Greedy fashion (Sutton and Barto, 1998)): πεθ(a, x) = (1−ε)πθ(a, x)+ε/|A|
where ε = .1. Real-world datasets include Scene, Yeast and TMC2007 with feature space up to
30,438 dimensions and action space up to 222. To account for this combinatorial action space
we allow a model θm to be learned using data from all past rollouts {sl}l<m for better sample
efficiency and therefore adjust variance estimation in Appendix 3.8 to take into account
sequential dependencies.

3.6.2. SCRM compared to CRM and related methods

We first compare SCRM to CRM and existing methods in the literature.

Comparison between SCRM and CRM First, we provide insights on the performance
that SCRM can achieve compared to classical CRM with increasing sample sizes. The key
difference between CRM/SCRM is that for each sample size nm CRM learns from samples
generated by the logging model sCRM

m ← θ0 (see Alg. 7) whilst SCRM learns from samples
generated by a series of optimized models sSCRM

m ← θm (see Alg. 6). For each sample size
we select a posteriori the best λ for both methods based on test set loss value. We report in

1All the code to reproduce the empirical results is available at: https://github.com/criteo-research/sequ
ential-conterfactual-risk-minimization

https://github.com/criteo-research/sequential-conterfactual-risk-minimization
https://github.com/criteo-research/sequential-conterfactual-risk-minimization
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Figure 3.2: Test loss as a function of sample size on Scene, Yeast, TMC2007, Advertising, (from left to
right). SCRM (in orange) converges faster and with less variance than CRM (in blue).

Percentage p 0.7 0.8 0.9

CRM 100× 210 100× 216 > 100× 222

SCRM (ours) 100× 28 100× 29 100× 211

Table 3.1: Needed sample size to achieve test loss L(θ) ≤ p ∗ L(θ∗) on the setting in Example 3.3.1
over the average of 10 random runs. SCRM needs way less data to converge to near optimal solution.

λ is set to its theoretical value.

Figure 3.2 over M = 10 rollouts the mean test loss depending on sample size up to 210, with
standard deviation estimated over 10 random runs. We observe that SCRM converges very
fast, often within the first rollouts. Conversely, CRM needs more samples and the variance
is higher. We conclude that there is a striking benefit to use a sequential design in order to
achieve near optimal loss with much fewer samples and better confidence compared to CRM.
Complementary results on other datasets are available in Appendix 3.8.

Moreover, to further illustrate this benefit of efficient learning we also report in Table 3.1
the sample size needed to attain near optimal performance when θ∗ is known as in Example
3.3.1, where we also observe that SCRM reaches optimal performances faster than CRM. This
corroborates the benefits of improved excess risk rates for SCRM.

Hyper-parameter selection for SCRM In our experiments, hyperparameter selection
consists in choosing a value for λ. We describe a simple heuristic and evaluate its performance
on different datasets. We propose to select λ̂m by estimating the non-penalized CRM loss
(Eq. (1.12)) using offline cross-validation on past data st<m. We report in Table 3.2 the test
loss obtained when choosing a fixed λ a posteriori (λ′) or with this heuristic (λ̂). We observe
that loss confidence intervals for both methods intersect for all discrete datasets, except
on TMC2007 where the degradation shows only at the 3rd digit. On continuous datasets,
the heuristic actually improves upon the fixed a posteriori selection. We conclude that this
heuristic is usable in practice.

Comparison with other methods In this paragraph we compare our SCRM to related
methods to explore practical implications of existing methods in our setting. We first consider
batch bandits methods and implement the stochastic sequential batch pure exploitation
(SBPE) algorithm in (Han et al., 2020) and a batch version of kernel UCB (Valko et al., 2013)
algorithm (BKUCB) with an optimized library (see implementations details in Appendix
3.8). We also experiment with off-policy RL methods PPO (Schulman et al., 2017) and TRPO
(Schulman et al., 2015) from the StableBaselines library (Raffin et al., 2021) (see Appendix 3.8).
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Pricing Advertising Yeast TMC2007
λ′ −5.353± .178 −.716± .020 .294± .026 .146± .012
λ̂ −5.575± .036 −.726± .001 .299± .039 .164± .021

Table 3.2: Test loss after 10 rollouts when choosing λ by a posteriori selection (λ′) or with proposed
heuristic (λ̂). Our heuristic is competitive with the a posteriori selection of a fixed λ′.

Pricing Advertising Scene Yeast TMC2007
n/|A|/dim(X )| 105/∞/10 105/∞/2 2.103/26/295 2.103/214/104 3.104/222/3.104

Baseline −3.414± .162 −.431± .120 .353± .009 .478± .014 .511± .003
SBPE DNF DNF .179± .001 .302± .003 DNF
BKUCB DNF DNF .236± .014 .303± .004 DNF
TRPO -5.750± .020 −.670± .030 .376± .001 .434± .001 .396± .001
PPO −5.274± .200 −.637± .015 .206± .001 .463± .001 .263± .001
CRM −5.325± .068 −.594± .100 .233± .031 .362± .044 .158± .034
SCRM (ours) −5.575± .036 -.726± .020 .219± .009 .294± .026 .146± .012
Skyline −5.830± .020 −.739± .002 .179± .002 .312± .003 .142± .001

Table 3.3: Test loss ± stddev of different methods after 10 rollouts. SCRM achieves optimal or near
optimal performance in all datasets. Batch bandit methods did not finish (DNF) on large scale settings,

and RL methods perform overall poorly on discrete settings with large action space.

Indeed, such methods model more general state transitions based on past actions, but they
could be used in our setting. To fairly compare all methods (in particular those for which no
heuristic existing for hyper-parameter selection) we report the mean and standard deviation
over 10 random runs of the best test loss a posteriori over hyperparameter grids of the same
size. First, we observe that SCRM beats CRM on all datasets, illustrating the benefit of the
sequential design. Second, on discrete tasks (where we the combinatorial action space is
large) we observe that SCRM achieves nearly the best test loss in all tasks, while RL methods
have difficulties maintaining good performances. Third, batch bandits algorithms can achieve
good performances in practice because of their deterministic decision rules. However, they
involve an O(n3) matrix inversion and therefore did not finish (DNF) in 24h (per single run)
on a 46 CPU / 500G RAM machine in most of our settings with large sample size n, which
make them unpractical for large scale experiments. We conclude that SCRM is an effective
learning paradigm and that it scales successfully on a variety of settings.

3.6.3. Details on SCRM

Next, we provide additional empirical evaluations of details of our method.

Evaluation of IPS-IX To understand the bias-variance trade-off that IPS-IX can achieve
in practice compared to other counterfactual estimators we consider a policy evaluation
experiment. The task we consider uses sinusoidal losses y(a) = cos(a) and evaluated policies
are shifted Gaussians {πi = N (i ∗ π/4, 1)}i=0,4, with π0 being the logging policy. Evaluated
policies with large shifts with π0 therefore simulate the setting where the logging policy
underexplores the action space. The estimators we consider include IPS, SNIPS Swaminathan



3.7. Discussions 94

and Joachims (2015b), clipped IPS (eq. IPS) with heuristic from Bottou et al. (2013) and
IPS-IX (eq. 3.3) with α = 1/n. All methods therefore use their respective heuristics to set
hyperparameters. We report in Figure 3.3 the bias and variance of estimators for each shift
µ0 − µ = i ∗ π/4 for i = 0, . . . , 4. We observe that IPS-IX shows an empirical bias comparable
to IPS, lower than SNIPS and clipped IPS while mainting a lower variance. Moreover its
variance is only slightly higher than clipped IPS which introduced a large bias. We conclude
that besides being a key component of our analysis IPS-IX also controls the variance with a
better tradeoff in practice. More details are available in Appendix 3.8.
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Figure 3.3: Comparison of counterfactual estimators on policy evaluation. Bias (left), Variance (right).
IPS-IX shows a low bias and compares favorably to IPS and SNIPS in terms of variance.

When is SCRM useful is a natural question of interest when choosing the method to be
used on a given logged bandit feedback problem. Intuitively one can imagine that SCRM
will be most useful when the logging policy underexplores the action space, for example
when the distance (in parameter space) between the logging and optimal parameters is large.
To study this question we proceed to the following experiment on the setup of Example
3.3.1 with Gaussian distributions N (θ, σ) and fixed loss variance σ∗ = Vary(y). We vary the
distance δ0 = ∥θ∗ − θ0∥ between the optimal model θ∗ and the logging model θ0. Since the
ideal exploration level may be task dependent we choose a posteriori the best σ on a grid, for
both CRM and SCRM. We report in Figure 3.4 the best final loss for both CRM and SCRM for
a range of values of δ0. We observe in particular that SCRM achieves better final losses for
larger distances δ0 than CRM. With the same number of rollouts M , SCRM can extend the
exploration to further areas while CRM fails for any exploration level in those cases, which
advocates for using sequential deployments.

3.7. Discussions
In this work, we have proposed a method to extend the CRM perspective for designing

sequential data collection experiments. We have introduced a novel counterfactual estimator
to improve variance control in excess risk bounds. Under a weak error bound assumption,
we have sequentially applied these excess risk guarantees to achieve faster rates similarly to
acceleration methods. Our method also improves upon CRM in practice and is particularly
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Figure 3.4: Best final loss when varying δ0 = ∥θ∗ − θ0∥. SCRM achieves better losses especially for
larger δ0.

well-suited for this setting compared to existing methods in the literature. It is worth noting
that, in order to avoid introducing dependencies in the excess risk bounds we analyzed,
the theoretical algorithm we have studied uses geometric sample sizes to discard previous
samples. However, using all past samples has been found to be also effective in practice
and developing guarantees for this case would be an interesting area for future research.
Additionally, similar to online settings that involve an exploration-exploitation tradeoff,
investigating the use of optimism in the face of uncertainty (OFUL) principle in SCRM would
also be a promising avenue for future work.
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3.8. Appendices
This appendix is organized as follows: in Appendix 3.8, we provide additional expla-

nations on counterfactual methods related to our approach. In Appendix 3.8, we detail our
analysis of our counterfactual estimator as well as the general SCRM procedure, as given
in Alg. 6. Next, in Appendix 3.8 we present all the details of the empirical evaluation and
eventually in Appendix 3.8 we provide all additional empirical results that were omitted
from the main paper due to space limitation.

3.9. Additional details on counterfactual estimators

3.9.1. Unconfoundedness in sequential designs

In these explanations, we recall that the distributions of contexts as well as the distribution
of losses are fixed. In other words, the latter do not vary from one batch to another. In the
counterfactual risk minimization framework (CRM) (Swaminathan and Joachims, 2015a), the
causal graph (using the conventions in (Peters et al., 2017)) can be represented as shown in
Figure 3.5.

A YX θ

model treatmentcontext outcome

Figure 3.5: Causal Graph in a randomized data collection experiment. A denotes action (or treatment),
X context, Y is the loss (or outcome). The causal influence of the contexts on actions is done through

the model θ.

In the sequential counterfactual risk minimization (SCRM) framework, if we unfold the
causal graph, the following representation can be given in Figure 3.6.

At Yt

Yt+1

Xt

Xt+1

θt

θt+1 At+1

model treatmentcontext outcome

Figure 3.6: Causal Graph in a sequential randomized data collection experiment. A denotes action (or
treatment), X context, Y is the loss (or outcome). The contextual treatments are taken through the

models θt.

Therefore, it is clear that in general, θt ⊥̸⊥ θt+1. However, from d-separation and
faithfullness (Peters et al., 2017), we have for t′ < t:

θt ⊥⊥ θt′ |θt−1.

Therefore, given that all the dependencies are observed and that we can condition on the
direct parents of a given model θt, sequential randomized data collection are possible.
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Figure 3.7: Graphical illustration of SCRM setup (left) and CRM (right), learned with same amount of
data after each batch m. The training data are displayed with color block and the policy used to
sample actions in these block are either adaptive (SCRM) or using the loggind model θ0 (CRM).

More importantly, in the analysis, to ensure that no additional bias is introduced, we
condition on the set of observed realizations s0, . . . , st−1 that were collected to learn θt and
apply a tower rule in the expectation as shown in the next section with the multiple importance
sampling estimator.

We eventually provide in Figure 3.7 an illustration of SCRM and CRM.

3.9.2. Multiple Importance Sampling Estimators

Note that in order to avoid introducing dependencies in the excess risk bounds we
analyzed, the theoretical algorithm we have studied uses geometric sample sizes to discard
previous samples. However, using all past samples is effective in practice and developing
guarantees for this case would be an interesting area for future research. We present in this
section a estimators using aggregation of all previous information. In particular, we can
use Multiple Importance Sampling (MIS) (Owen, 2013) over all previous samples. Consider
in particular a partition of unity with m > 1 weight functions ωt(a) > 0 which satisfies∑m

t=0 ωt,m(a) = 1 for all a and m ∈ {0, . . .M}. The MIS estimator writes:

L̂MIS
m (θ) =

m∑
t=0

1

nt

nt∑
i=1

ωt,m(at,i)yt,iw
θ
t,i, wθ

t,i =
πθ(at,i|xt,i)

πt,i
. (3.6)

In multiple importance sampling we usually assume that the behavior distributions are
independent. In our case, when we optimize θt based on the models θt−1, . . . , θ0, we break
this assumption. However, as we will see, we can still have the unbiasedness property and
derive an estimator for the variance of the estimator.

Proposition 3.9.1 (Unbiasedness). The MIS estimator (3.6) is unbiased when the loss y is fixed (its
distribution PY(·|x, a) does not depend on time rollout m).

Proof. Let m ∈ {1, . . .M}. We recall that at all rounds t < m, models θt ∈ Θ were deployed
and sets st of nt observations st = (xt,i, at,i, lt,i, πt,i)i=1,...,nt were collected thereof, with
propensities πt,i = πθt(at,i|xt,i) to learn the next model θt+1. To prove the unbiasedness we
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use the tower rule on the expectation and condition on previous observations s1, . . . st−1:

E[L̂MIS
m (θ)] = E

[
m∑
t=0

1

nt

nt∑
i=1

Ex,θm,y

[
ωt(a)yw

θ
t

]]

= E

[
m∑
t=0

Ex,θm,y

[
ωt(a)yw

θ
t

]]

=

m∑
t=0

Es1...st−1

[
Ex,θm,y

[
ωt(a)yw

θ
t | s1 . . . st−1

]]
=

m∑
t=0

Es1...st−1 [Ex,θ,y [ωt(a)y | s1 . . . st−1]]

= E

[
Ex,θ,y

[(
m∑
t=0

ωt(a)

)
y

]]
= Ex,θ,y [y]

= L(θ),

where the second last line is true only when the distribution of y does not change over time
roll-outs m.

Among the proposals for functions ωt(a), the most ’naive’ and natural heuristic is to
choose

ωt(a) =
nt∑m
l=1 nl

, (3.7)

which gives the naive concatenation of all IPS estimators

L̂n-MIS
m (θ) =

1

n

m∑
t=0

nt∑
i=1

yt,i
πθ(at,i|xt,i)
πθt(at,i|xt,i)

, (3.8)

where n =
∑m

t=0 nt.

With the previous definition of the empirical mean estimator, we can now derive an
empirical variance estimator, starting with the naive multi importance sampling estimator. We
write the random variable rm = (πθ/πθm)y. We note that for inside a batch m each realization
of rmi = (πθ(am,i|xm,i)/πm,i)ym,i and rmj are independent. But the realizations of the random
variables rm and rm′ are dependent. Writing n =

∑m
t=0 nt

Var

[
1

n

m∑
t=0

nm∑
i=1

rmi

]
=

m∑
t=0

Var

[
1

n

nm∑
i=1

rmi

]
+ 2

∑
1≤p<q≤m

Cov

 1

n

np∑
i=1

rpi ,
1

n

nq∑
j=1

rqj


=

1

n2

m∑
t=0

Var

[
nm∑
i=1

rm

]
+ 2

1

n2

∑
1≤p<q≤m

np∑
i=1

nq∑
j=1

Cov [rp, rq]

=
1

n2

 m∑
t=0

Var

[
nm∑
i=1

rm

]
+ 2

∑
1≤p<q≤m

npnqCov [r
p, rq]

 ,
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where the second last equality is obtained with the bilinearity of the covariance. Given
the latter expression of the variance, we propose the following estimator and with a linear
sampling where all np = nq for p, q ∈ {1, . . . ,M}:

V̂ n-MIPS
m (θ) =

1

n2

 m∑
t=0

V̂ (rt) + 2
∑

1≤p<q≤m

npnq

(
1

np

np∑
k=1

(
rpk − r̄p

)(
rqk − r̄q

)) , (3.9)

where V̂ (rm) = 1
nm(nm−1)

∑nm
i=1

(
rmi − r̄m

)2 and r̄m = 1
nm

∑nm
j=1 r

m
j .

Note also that for other functions ωt(a), the most studied one is the balance heuristic with
ωt ∝ ntπθt(a), that is:

ωBH
t (a) =

ntπθt(a)∑m
l=1 nlπθl(a)

. (3.10)

The latter heuristic has been studied for its low variance (Owen, 2013) but these properties
have been studied under an i.i.d assumption that is broken in our adaptive data collection
strategy. Eventually, note that controlling the variance of this estimator with an implicit
exploration estimator as we do in the i.i.d case would make a an interesting research
direction.

3.10. Analysis details
In this section, we provide the details of our analysis by starting with essential definitions,

then our proofs of variance dependent excess risk bounds and finally our regret analysis.

3.10.1. Definitions

Cm(Θ) is a complexity measure that will be upper-bounded by the metric entropy in
sup-norm at level ε = 1/nm of the following function set,

Fm,Θ :=

{
fθ : (x, a, y) ∈ X ×A× Y 7→

1

W
+

1

W
y

(
πθ(a|x)

πθm(a|x) + απθ(a|x)
− 1

)
for θ ∈ Θ

}
.

(3.11)
The latter corresponds to clipped prediction errors of policies πθ normalized into [0, 1]. More
precisely, to define rigorously Cm(Θ), we denote for any nm ≥ 1 and ε > 0, the complexity of
a class F by

H∞(ε,F , n) = sup
(xi,ai,yi)∈(X×A×Y)n

H(ε,F
(
{xi, ai, yi}

)
, ∥ · ∥∞) , (3.12)

where F
(
{xi, ai, yi}

)
=
{(
f(x1, a1, y1), . . . , f(xn, an, yn)

)
, f ∈ F

}
⊆ Rn and the number

H(ε,A, ∥ · ∥∞) is the smallest cardinality |A0| of a set A0 ⊆ A such that A is contained in the
finite union of ε-balls centered at points in A0 in the metric induced by ∥ · ∥∞). Then, Cm(Θ)
is defined by

Cm(Θ) = logH∞(1/nm,Fm,Θ, 2nm) . (3.13)
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3.10.2. Variance-dependent excess risk bounds

We will denote by Em[·] = E[·|s0, . . . sm] the conditional expectation given the set of
observation samples sm = (xm,i, am,i, ym,i, πm,i)i=1,...,nm up to the rollout m. Here, we
recall that xm,i ∼ PX , am,i ∼ πθm(·|xm,i), ym,i ∼ PY(·|xm,i, am,i), and πm,i = πθm(am,i|xm,i).
Furthermore, throughout the document, Ex,θm,y

[
·
]

(resp. Varx,θm,y

[
·]) denotes the expectation

(resp. variance) in (x, a, y) where x ∼ PX , a ∼ πθm(·|x), and y ∼ PY(·|x, a).
Proposition 3.4.1 (Generalization Error Bound). Let L̂IPS-IX

m and V̂ IPS-IX
m be the empirical estimators

defined respectively in Eq. (3.3) and Eq. (3.4). Let δ ∈ (0, 1), θ ∈ Θ, and nm ≥ 2 the number of
samples associated to the logged dataset at round m. Then, with probability at least 1− δ,

L(θ) ≤ L̂IPS-IX
m (θ) + λ

√
V̂ IPS-IX
m (θ)

nm
+

2λ2W

nm
+

√
log(2/δ)

2nm
, (3.14)

where λ =
√
18(Cm(Θ) + log(2/δ)).

Proof. Let δ ∈ (0, 1) and θ ∈ Θ. Since all functions in Fm,Θ defined in Eq. (3.11) take values in
[0, 1], we can apply the concentration bound of Maurer and Pontil (2009, Theorem 6) to the
set Fm,Θ. This yields, with probability at least 1− δ/2,

Ex,θm,y[fθ(x, a, y)]−
1

nm

nm∑
i=1

fθ(xm,i, am,i, ym,i)

≤

√
18V̂nm(fθ)(Cm(Θ) + log(2/δ))

nm
+

15(Cm(Θ) + log(1/δ))

(nm − 1)
, (3.15)

where

V̂nm(fθ) =
1

nm − 1

nm∑
i=1

(
fθ(xm,i, am,i, ym,i)−

1

nm

nm∑
j=1

fθ(xm,j , am,j , ym,j)
)2

is an estimation of the sample variance. Let α > 0 and define the following biased estimator
of the excess risk:

Lα
m(θ) = Ex,θm,y

[
y

(
πθ(a|x)

πθm(a|x) + απθ(a|x)
− 1

)]
∀θ ∈ Θ. (3.16)

We recall that Ex,θm,y

[
·
]

denotes the expectation in (x, a, y) where x ∼ PX , a ∼ πθm(·|x), and
y ∼ PY(·|x, a). By construction of fθ (see Eq. (3.11)),

Ex,θm,y[fθ(x, a, y)] =
1

W
+

1

W
Lα
m(θ)

1

nm

nm∑
i=1

fθ(xm,i, am,i, ym,i) =
1

W
+

1

W
L̂IPS-IX
m (θ)− 1

Wnm

nm∑
i=1

ym,i

V̂nm(fθ) =
1

W 2
V̂ IPS-IX
m (θ) ,
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where L̂IPS-IX
m and V̂ IPS-IX

m are defined respectively in Eq. (3.3) and Eq. (3.4). Thus, multi-
plying (3.15) by W , substituting the above terms, and using λ =

√
18(Cm(Θ) + log(2/δ)),

yields

Lα
m(θ)− L̂IPS-IX

m (θ) +
1

nm

nm∑
i=1

ym,i ≤ λ

√
V̂ IPS-IX
m (θ)

nm
+

15λ2W

18(nm − 1)
, (3.17)

with probability 1− δ/2. Now, let us decompose

Lα
m(θ) = Ex,θm,y

[
y

(
πθ(a|x)

πθm(a|x) + απθ(a|x)
− 1

)]
= Ex,θm,y

[
y

πθ(a|x)
πθm(a|x) + απθ(a|x)

]
− L(θm).

But, since the losses y are bounded in [−1, 0] almost surely,

Ex,θm,y

[
y

πθ(a|x)
πθm(a|x) + απθ(a|x)

]
≥ Ex,θm,y

[
y
πθ(a|x)
πθm(a|x)

]
= L(θ),

which, substituted into the previous equation, entails,

Lα
m(θ) ≥ L(θ)− L(θm). (3.18)

Lower-bounding the left-hand side of (3.17), we thus get w.p 1− δ/2,

L(θ)− L̂IPS-IX
m (θ) ≤ λ

√
V̂ IPS-IX
m (θ)

nm
+

15λ2W

18(nm − 1)
+ L(θm)− 1

nm

nm∑
i=1

ym,i.

Using Em−1[ym,i] = L(θm) and applying Hoeffding’s inequality, this further yields w.p. 1− δ

L(θ) ≤ L̂IPS-IX
m (θ) + λ

√
V̂ IPS-IX
m (θ)

nm
+

15λ2W

18(nm − 1)
+

√
log(2/δ)

2nm
. (3.19)

Eventually, note that (nm − 1)−1 ≤ (2/nm) since nm ≥ 2. Thus,

L(θ) ≤ L̂IPS-IX
m (θ) + λ

√
V̂ IPS-IX
m (θ)

nm
+

2λ2W

nm
+

√
log(2/δ)

2nm
, (3.20)

which concludes the proof.

Proposition 3.4.2 (Conservative Excess Risk). Let m ≥ 0 and θm ∈ Θ. Let sm be a set of samples
collected with am,i ∼ πθm(·|xm,i). Then, under Assumptions 3.4.1 and 3.4.2, the solution θm+1 of
Problem (SCRM) with the IPS-IX estimator in Eq. (3.5) on the samples sm satisfies the excess risk
upper-bound

∆m+1 = L(θm+1)− L(θ∗) ≲
√
d log(nm) + log(1/δ)

nm
ν2m +

W 2 +W (d log(nm) + log(1/δ))

nm
,

(3.21)

where ν2m = Varx,θm

(
πθ∗(a|x)
πθm(a|x)

)
.
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Proof. We consider the notations of the proof of Proposition 3.4.1. Fix θ∗ ∈ Θ. Applying,
Theorem 15 of Maurer and Pontil (2009)2 to the function set Fm,Θ defined in (3.11), we get
with probability 1− δ

Ex,θm,y[fθm+1(x, a, y)]− Ex,θm,y[fθ∗(x, a, y)]

≤

√
32Varx,θm,y

[
fθ∗(x, a, y)

](
Cm(Θ) + log 30

δ

)
nm

+
22
(
Cm(Θ) + log 30

δ

)
nm − 1

.

This can be written as:
∆∗

m ≤ U∗
m, (3.22)

with the following definitions:

∆∗
m = Ex,θm,y[fθm+1(x, a, y)]− Ex,θm,y[fθ∗(x, a, y)]

U∗
m =

√
32Varx,θm,y

[
fθ∗(x, a, y)

](
Cm(Θ) + log 30

δ

)
nm

+
22
(
Cm(Θ) + log 30

δ

)
nm − 1

. (3.23)

Step: Lower bounding ∆∗
m Using the definition of fθ(x, a, y) in (3.11) and that of Lα

m in
Eq. (3.16), we have

Ex,θm,y[fθm+1(x, a, y)] =
1

W
+

1

W
Lα
m(θm+1).

Thus, ∆∗
m can be re-written as

∆∗
m =

1

W
(Lα

m(θm+1)− Lα
m(θ∗)) ,

which we now lower-bound. To do so, we begin by upper-bounding Lα
m(θ∗). It can be

expressed as

Lα
m(θ∗) = Ex,θm,y

[
y

πθ∗(a|x)
πθm(a|x) + απθ∗(a|x)

]
− L(θm). (3.24)

To shorten notation, from now on and throughout this proof, we write πθ instead of πθ(a|x),
omitting the dependence on a and x. Using the inequality (1 + x)−1 ≥ 1− x for x ≥ 0, we
have

Ex,θm,y

[
y

πθ∗

πθm + απθ∗

]
= Ex,θm,y

[
y
πθ∗

πθm

1

1 + α πθ∗
πθm

]
(3.25)

≤ Ex,θm,y

[
y
πθ∗

πθm

]
− αEx,θm,y

[
y

(
πθ∗

πθm

)2
]

= L(θ∗)− αEx,θm,y

[
y

(
πθ∗

πθm

)2
]

≤ L(θ∗) + αW 2 , (3.26)

2Note that in their notation, logMn(π) equals Cm(Θ) + log(10), X is the dataset {(xi, ai, yi)}1≤i≤n where
(xi, ai, yi)

i.i.d.∼ PX × πθm(·|x)× PY(·|a, x), and P (·, µ) is the expectation with respect to one test sample
Ex,θm,y[ · ].
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where the last inequality is by Assumption 3.4.1 and because y ∈ [−1, 0]. Together with (3.24),
we get

Lα
m(θ∗) ≤ L(θ∗) + αW 2 − L(θm).

We recall that L(θm+1)− L(θm) ≤ Lα
m(θm+1) by Eq.(3.18). Therefore,

1

W
(L(θm+1)− L(θ∗)− αW 2) ≤ 1

W
(Lα

m(θm+1)− Lα
m(θ∗)) ,

which finally gives
1

W
(L(θm+1)− L(θ∗)− αW 2) ≤ ∆∗

m. (3.27)

Step: Upper bound U∗
m By definition of fθ(x, a, y) in (3.11), we have

Varx,θm,y

[
fθ∗(x, a, y)

]
=

1

W 2
Varx,θm,y

[
y

(
πθ∗

πθm + απθ∗
− 1

)]
≤ 1

W 2
Ex,θm,y

[
y2
(

πθ∗

πθm + απθ∗
− 1

)2
]
≤ 1

W 2
Ex,θm

[(
πθ∗

πθm + απθ∗
− 1

)2
]
.

Then, using the inequality (x+ y)2 ≤ 2x2 + 2y2, for x, y ∈ R, this may be upper-bounded as

Varx,θm,y

[
fθ∗(x, a, y)

]
≤ 2

W 2
Ex,θm

[(
πθ∗

πθm + απθ∗
− Ex,θm

[
πθ∗

πθm + απθ∗

])2
]
+

2

W 2

(
Ex,θm

[
πθ∗

πθm + απθ∗

]
− 1

)2

.

(3.28)

On the one hand, the first term of the right-hand side may be upper-bounded as

Ex,θm

[(
πθ∗

πθm + απθ∗
− Ex,θm

[
πθ∗

πθm + απθ∗

])2
]
= Varx,θm

[
πθ∗

πθm + απθ∗

]
≤ ν2m,

where ν2m = Varx,θm

[
πθ∗
πθm

]
. On the other hand, for the second term, we use the same

factorization as in Eq. (3.25) to get

−αEx,θm

[(
πθ∗

πθm

)2
]
≤ Ex,θm

[
πθ∗

πθm + απθ∗

]
− 1 ≤ 0 ,

which yields the upper-bound(
Ex,θm

[
πθ∗

πθm + απθ∗

]
− 1

)2

≤ α2 Ex,θm

[(
πθ∗

πθm

)2
]
≤ α2W 2.

Therefore, substituting the last two upper-bounds into (3.28) entails

Varx,θm,y

[
fθ∗(x, a, y)

]
≤ 2

W 2

(
ν2m + α2W 2

)
.
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Then, replacing this upper-bound into the definition of U∗
m in (3.23) and using Assumption

3.4.2 to upper bound the terms in Cm(Θ) ≤ d log(nm), we obtain the following upper-bound

U∗
m ≤

1

W

√
64(ν2m + α2W )

(
d log(nm) + log 30

δ

)
nm

+
22
(
d log(nm) + log 30

δ

)
nm − 1

≤ 1

W

√
64(ν2m + α2W )

(
d log(nm) + log 30

δ

)
nm

+
44
(
d log(nm) + log 30

δ

)
nm

, (3.29)

where the last inequality is because nm ≥ 2.

Step: excess risk upper bound Setting α = 1
nm

and using the two previous bounds (3.27)
and (3.29) respectively on ∆∗

m and on U∗
m into (3.22), we get

L(θm+1)−L(θ∗) ≤
√

64
(
d log(nm) + log 30

δ

)
nm

(
ν2m +

1

n2m
W 2
)
+W

44
(
d log(nm) + log 30

δ

)
nm

+
1

nm
W 2.

(3.30)
Using that

√
a+ b ≤ √a+

√
b, we have that√

64
(
d log(nm) + log 30

δ

)
nm

(
ν2m +

1

n2m
W 2
)

≤

√
64
(
d log(nm) + log 30

δ

)
nm

ν2m +
W

nm

√
64
(
d log(nm) + log 30

δ

)
nm

.

Then, since nm ≥ 2 and δ < 1, we have d log(nm) + log(30/δ) ≥ log(2) + log(30) ≥ 4, which
yields

1

nm

√
64
(
d log(nm) + log 30

δ

)
nm

≤

√
32
(
d log(nm) + log 30

δ

)
nm

≤
√
8
(
d log(nm) + log 30

δ

)
nm

.

Substituting the last two inequalities into (3.30) finally entails

L(θm+1)− L(θ∗) ≤ 8

√
d log(nm) + log 30

δ

nm
ν2m + 47W

d log(nm) + log 30
δ

nm
+
W 2

nm
, (3.31)

which concludes the proof.

3.10.3. Regret analysis

Proposition 3.5.1 (Regret upper-bound). Let n0, n ≥ 2 and θ∗ ∈ argminθ L(θ). Let nm = n02
m

for m = 0, . . . ,M =
⌊
log2(1 +

n
n0
)
⌋
. Then, under Assumptions 3.4.1, 3.4.2 and 3.5.1, the SCRM

procedure (Alg. 6) satisfies the excess risk upper-bound

L(θM )− L(θ∗) ≤ O
(
n
− 1

2−β log n
)
.

Moreover, the expected regret is upper-bounded as follows:

Rn = E

[ M∑
m=0

nm+1

(
L(θm)− L(θ∗)

)]
≤ O

(
n

1−β
2−β log(n)2

)
.
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Proof. First, note that for nm = n02
m and M =

⌊
log2(1 + n

n0
)
⌋
, we have

∑M−1
m=0 nm =

n0(2
M − 1) ≤ n. Hence, Alg. 6 has collected at most n samples to design the estimator θM .

For m ≥ 0, we recall ∆m = L(θm)− L(θ∗) and use Eq. (3.31) to write

∆m+1 ≤ 8

√
d log(nm) + log 30

δ

nm
ν2m + 47W

d log(nm) + log 30
δ

nm
+
W 2

nm

≤ 8

√
d log(n) + log 30

δ

nm
ν2m + 47W

d log(n) + log 30
δ

nm
+
W 2

nm

= C

√
ν2m
nm

+
B

nm
, (3.32)

where C = 8
√
d log(n) + log 30

δ and B =W 2 + 47W (d log(n) + log 30
δ ) are independent of m.

Step: Obtaining a recurrence relation for ∆m+1 By Assumption 3.5.1, there exist γ > 0 and
β ∈ [0, 1] such that

ν2m = Varx,θm

(
πθ∗

πθm

)
≤ 1

γ

(
L(θm)− L(θ∗)

)β
=

∆β
m

γ
.

Replacing ν2m in Eq. (3.32) thus entails

∆m+1 ≤ C

√
1

γ

∆β
m

nm
+

B

nm

≤ C2−m
2

√
n0
γ
∆β

m +B2−mn0 ← nm = n02
m

= C

√
n0
γ
2−

m
2 ∆β/2

m +B2−mn0 . (3.33)

Step: Solving the recurrence relation for ∆m We then insure by induction that ∆m satisfies

∆m ≤ c02
−m
2−β , (3.34)

for some c0 > 0 that will be specified by the analysis.

Base step Since losses take values in [−1, 0], ∆0 = L(θ0)− L(θ∗) ≤ 1. Equation (3.34) is
thus satisfied for m = 0 as soon as c0 ≥ 1.

Induction step Let m ≥ 0. We assume that ∆m ≤ c02
−m
2−β and prove Equation (3.34) for

∆m+1. Using Eq. (3.33), we have

∆m+1 ≤ C
√
n0
γ
2−

m
2 ∆β/2

m +B2−mn0

≤ C
√
n0
γ
2−

m
2 c0

β/22
− mβ

β(2−β) +B2−mn0 ← by induction

≤ max
{
2C

√
n0
γ
c0

β
2 2

−m
2
− m

2−β , 2B2−mn0

}
. (3.35)
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Now, we show that both terms inside the maximum can be upper-bounded by c02−(m+1)/(2−β)

as soon as c0 is large enough. On the one hand, if c0 ≥ 4Bn0, we have

2B2−mn0 ≤ c02−(m+1) ≤ c02−
m+1
2−β .

On the other hand, if c0 ≥ (4C2n0/γ)
1/(2−β), we also have

2C

√
n0
γ
c0

β
2 2

−m
2
− m

2−β ≤ 2C

√
n0
γ
c0

β
2 2

−m+1
2−β ≤ c02−

m+1
2−β .

Combining the above two upper-bounds with (3.35) concludes the induction step under the
condition

c0 ≥ max

{
1,
(4C2n0

γ

) 1
2−β

, 4Bn0

}
.

Step: conclusion Finally, setting the above value for c0 we proved that for all m ≥ 0, we
have

∆m ≤ max

{
1,
(4C2n0

γ

) 1
2−β

, 4Bn0

}
2
− m

2−β

≤
(
1 +

(4C2n0
γ

) 1
2−β

+ 4Bn0

)
2
− m

2−β

=

(
1 +

(
256(d log n+ log 30

δ )n0

γ

) 1
2−β

+W 2n0 + 47Wn0

(
d log n+ log

30

δ

))
2
− m

2−β ,

(3.36)

where the last equality is by substituting the values of B and C from (3.32). For the final step
M = ⌊log2( n

n0
+ 1)⌋, this yields

∆M ≤
(
1 +

(
256(d log n+ log 30

δ )n0

γ

) 1
2−β

+W 2n0 + 47Wn0

(
d log n+ log

30

δ

))
2
− M

2−β

≤ 2

(
1 +

(
256(d log n+ log 30

δ )n0

γ

) 1
2−β

+W 2n0 + 47Wn0

(
d log n+ log

30

δ

))
×
(n0
n

) 1
2−β

= O
(
n
− 1

2−β log n
)
.

This concludes the first part of the proof.

Regret upper-bound To upper bound the cumulative regret, using nm+1 = n02
m+1, we

write

Rn =
M∑

m=0

∆mnm+1

(3.36)
≤ D

M∑
m=0

2
− m

2−β nm+1 = 2Dn0

M∑
m=0

2

(
1−β
2−β

)
m
,

where

D = 1 +

(
256(d log n+ log 30

δ )n0

γ

) 1
2−β

+W 2n0 + 47Wn0

(
d log n+ log

30

δ

)
.
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Then, computing the sum for M = ⌊log2( n
n0

+ 1)⌋, we have

Rn ≤ 2Dn0

M∑
m=0

2

(
1−β
2−β

)
m ≤ 2Dn0(M+1)2

(
1−β
2−β

)
M ≤ 2Dn0

(
1+log2

( n
n0

+1
))
×
(
1+

n

n0

) 1−β
2−β

.

Using that D = O(log n), we finally obtain

Rn ≤ O
(
n

1−β
2−β log(n)2

)
.

3.11. Additional discussions on the Hölderian Bound Assump-
tion 3.5.1

In this appendix, we discuss Assumption 3.5.1 on different particular examples.

3.11.1. Verification of the assumption on a toy example with Gaussian families

We consider the setting of Example 3.3.1. In the latter, the policies are Gaussian of the
form πθ = N (θ, σ2) and the loss is defined by lt(a) = (a − yt)2 − 1 where yt ∼ N (θ∗, σ2).
There is no loss in generality in assuming σ2 = 1. Then, we can compute

L(θ)− L(θ∗) = (θ − θ∗)2 and Varθ

[
πθ∗(a)

πθ(a)

]
= exp

(
(θ∗ − θ)2

)
− 1 .

We recall that we are interested in verifying the existence of γ > 0 and β > 0 for which
Assumption 3.5.1 holds, that is in this case for any θ ∈ Θ:

γVarθ

[
πθ∗(a)

πθ(a)

]
≤
(
L(θ)− L(θ∗)

)β
, (3.37)

which may be re-written here as

γ
(
exp

(
(θ∗ − θ)2

)
− 1
)
≤ (θ − θ∗)2β .

The latter is satisfied for any β ≤ 1 as soon as Θ is a bounded interval. Note that the constant
γ may decrease exponentially fast as the diameter of Θ increases. To illustrate, the existence
of such couples (β, γ), we plot in Fig. 3.8 different values of the following ratio

R(θ, β) =

Varθ

[
πθ∗(a)

πθ(a)

]
(
L(θ)− L(θ∗)

)β =
exp

(
(θ∗ − θ)2

)
− 1(

∥θ − θ∗∥2
)β . (3.38)

The value of γ can be found for different values of β in Fig. 3.8 by taking 1
γ = maxθ R(θ, β).

Higher values of β induce faster rates and lower values of γ induce worst constant terms in the
excess risk and regret bounds. Eventually, note that SCRM does not need those parameters
to run and those two parameters γ, β are automatically calibrated by SCRM to find the best
trade-off.
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Figure 3.8: Ratio R defined in (3.38) with different values of β.

3.11.2. Discussion of Assumption 3.5.1 for Exponential Families

In this section, we consider a more realistic example in which policies belong to an
exponential family. That is, we assume that the policies are parameterized by a parameter
η ∈ Rq and can be written in the form:

∀a ∈ A, πη(a) = eη·t(a)−A(η)h(a),

for some known function h : A → R+ and sufficient statistic t : A → Rq. Here, A(η) is
a normalization constant, so that eA(η) =

∫
a e

η·t(a)h(a) da. We provide in Example 3.11.1
a concrete example considered by (Swaminathan and Joachims, 2015a; Faury et al., 2020).
To ease the notation, we removed here the dependency on contexts, but the generalization
to contextual policies can be made similarly. The importance weight ratio may be written
as,

πη(a)

πηm(a)
= e(η−ηm)t(a)−(A(η)−A(ηm)). (3.39)

To verify Assumption 3.5.1, we need to upper bound their variance, which we shall write
as,

Vara∼πηm

[
πη(a)

πηm(a)

]
= e2(A(ηm)−A(η))Vara∼πηm

[
e(η−ηm)t(a)

]
.

Now, computing the moment generating function (MGF) of the statistic t(a) ∈ Rq

Mt(s) = E
[
es·t(a)

]
=

∫
a
es·t(a)eηm·t(a)−A(ηm)h(a) da

= e−A(ηm)

∫
a
e(ηm+s)·t(a)eηm·t(a)h(a) da

= eA(ηm+s)−A(ηm),

the variance term may be written as

Vara∼πηm

[
e(η−ηm)t(a)

]
=Mt(2(η − ηm))−M2

t (η − ηm) = eA(2η−ηm)−A(ηm) − e2(A(η)−A(ηm)) .

This eventually leads us to

Vara∼πηm

[
πη(a)

πηm(a)

]
= eA(2η−ηm)+A(ηm)−2A(η) − 1. (3.40)
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We now discuss two cases that are used for discrete actions (Swaminathan and Joachims,
2015a) and continuous actions (Kallus and Zhou, 2018; Zenati et al., 2020a).

Bounded sufficient statistic Supposing that there exists an upper bound A such that
∥t(a)∥ ≤ A, Cauchy-Schwartz inequality states that |(η − ηm) · t(a)| ≤ ∥η − ηm∥A, which
entails

Vara∼πηm

[
πη(a)

πηm(a)

]
= eA(2η−ηm)+A(ηm)−2A(η) − 1

=

∫
a e

(2η−ηm)·t(a)h(a) da
∫
a e

ηm·t(a)h(a) da(∫
a e

η·t(a)h(a) da
)2 − 1

=

∫
a e

(η−ηm)·t(a)eη·t(a)h(a) da
∫
a e

(ηm−η)·t(a)eη·t(a)h(a) da(∫
a e

η·t(a)h(a) da
)2 − 1

≤ e∥η−ηm∥A − 1 .

Assuming that the parameter space is compact, i.e, maxη,η′ ∥η − η′∥ ≤ D, there exists a
constant C that depends on A and D such that, this may be further upper-bounded as

Vara∼πηm

[
πη(a)

πηm(a)

]
≤ C∥η − ηm∥ .

Therefore, Assumption 3.5.1 is implied by

γC∥η − ηm∥2 ≤ (L(θ)− L(θ∗))2β .

The latter is implied by a local version of strong convexity for β = 1/2 (d’Aspremont et al.,
2021), and holds with γ = C−1D−2 for β = 0.

Example 3.11.1. For discrete actions A = {a1, . . . , aK}, we consider, as in (Swaminathan and
Joachims, 2015a) and (Faury et al., 2020), policies where given a context x, probabilities pi(x) of
sampling an action ai are given by

pi(x) =
exp(θ⊤ϕ(x, ai))∑K
j=1 exp(θ

⊤ϕ(x, aj))
. (3.41)

The function ϕ is typically a feature map associated to a kernel in a RKHS. In this case, the natural
parameter η and the sufficient statistic t(a) may be written as

η =


log( p1

pK
)

...
log(

pK−1

pK
)

0

 t(a) =

1{a = a1}
...

1{a = aK}

 . (3.42)

Lognormal and Normal distributions For normalN (µ, σ2) and lognormal Lognormal(µ, σ2)
distributions with fixed variance σ2 as considered by (Kallus and Zhou, 2018; Zenati et al.,
2020a), the normalizing constant writes A(η) = η2

2 , and we then obtain that:

A(2η − ηm) +A(ηm)− 2A(η) = (η − ηm)2 ,
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which gives:

Vara∼πηm

[
πη(a)

πηm(a)

]
= e∥η−ηm∥2 − 1 .

In that case, it is again possible for a bounded parameter space to linearize e∥η−ηm∥2 − 1 ≲
∥η − ηm∥2, consider losses that verify: for all η, there exists an optimal η∗ such that

γ∥ηm − η∗∥2 ≤
(
L(ηm)− L(η∗)

)β
. (3.43)

Again, this holds generally for β = 0 and for locally strongly convex losses for β = 1.

3.12. Experiment details

3.12.1. Code

All the code to reproduce figures and tables is available in the following repository:
https://github.com/criteo-research/sequential-conterfactual-risk-minimizatio
n.

3.12.2. Empirical settings details

Pricing The pricing application in (Demirer et al., 2019) considers a "personalized pricing"
setting where given contexts x, prices p (which are the actions) need to be predicted to
maximize the revenue:

r(x, p) = p(a(x)− b(x)p+ ε)

where ε ∼ N (0, 1) and d = a(x)+ b(x)p+ ε is akin to an unknown context-specifidemand
function. The data generating process uses contexts x ∈ [1, 2]k for k > 1 a positive integer.
Only l < k dimensions however affect the demand, that is if we write x̄ = 1

l (z1, . . . , zl). The
price p is generated from a Gaussian logging policy p ∼ N (x̄, 1) centered in x̄. We consider
in our example the quadratic functionnal a(x) = 2x2 and b(x) = 0.6x as in the original
paper.

Advertising The advertising simulation in (Zenati et al., 2020a) consists in predicting the
potential p ∈]0,+∞[ of a user that may be compared to their a priori responsiveness to
a treatment. The potential is caused by an unobserved random group variable g in G
(groups of "high" or "low" potential users in their responsiveness) that influences context
x of users. The goal is then to find a policy π(a|x) that maximizes reward by adapting
to an unobserved potential. The potentials are normally distributed conditionally on the
group index, p|g ∼ N (µg, σ

2
g) where σg = 0.5 and µg = 1 or 3 for two groups. The observed

reward−y is then a function of the action a and the context x through the associated potential
px of the user x. The reward function mimics reward over the offline continuous bidding
dataset in (Zenati et al., 2020a) with the form:

https://github.com/criteo-research/sequential-conterfactual-risk-minimization
https://github.com/criteo-research/sequential-conterfactual-risk-minimization
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rl(px, a) =

{ a
px

if a < px
1
2(px − a) + 1 else

r(px, a) = max(rl(px, a),−0.1)

The logging policy is a lognormal distribution as it is common in advertising applications
(Bottou et al., 2013). In particular, as in (Zenati et al., 2020a), πθ0 = Lognormal(µ, σ2) where
the mean exp(µ+ σ2/2) = 2 and the variance (exp(σ2)− 1) exp(2µ+ σ2) = 1.

Yeast, Scene, TMC2007 We follow Swaminathan and Joachims (2015a). We now recall briefly
the setup. The problem is a binary multilabel classification with |A| = 2K potential labels.
All models are parametrized by πθ(a|x) ∝ exp(θ⊤(x

⊗
a)). The baseline (resp. skyline) is

a supervised, full information model with identical parameter space than CRM methods
trained on 5% (resp. 100%) of the training data. Our main modification it to consider the
class of probabilistic policies that satisfy Assumption 3.5.1 by predicting actions in an Epsilon
Greedy fashion Sutton and Barto (1998)): πεθ(a, x) = (1− ε)πθ(a, x) + ε/|A|where ε = .1. The
loss is the Hamming loss (number of incorrectly assigned labels - both false positives and
false negatives in the action vector):

L(θ) =
1

nK

n∑
i=1

K∑
j=1

1
[yji=aji ]

(3.44)

where yji (resp. aji ) is the j-th component of the label vector (resp. action vector) of line i. A
uniform policy will thus evaluate at a loss of .5.

3.12.3. Implementation details

Counterfactual methods In this paragraph we start by detailing the non adaptive counter-
factual risk minimization that we compare to in this work.

Algorithm 7: Counterfactual Risk Minimization
Input: Logged observations (x0,i, a0,i, y0,i, π0,i)i=1,...,n0 , parameter λ > 0
for m = 1 to M do

Build Lm from observations sm using Eq. (3.5)
Learn θ using Eq. (SCRM)
Re-deploy the logging model θ0 and collect observations
sm+1 = (xm+1,i, am+1,i, lm+1,i, πm+1,i)i=1,...,nm+1 ;

end

We also provide the grid of hyperparameters for the λ evaluated in CRM and SCRM
methods λ ∈ [1e− 5, 1e− 4, 1e− 3, 1e− 2, 1e− 1].

Batch Bandits Let k : (X × A) × (X × A) → R be a bounded positive definite Kernel
associated to a RKHSH, ϕ : X ×A → H is the feature map such that k(s, s′) = ⟨ϕ(s), ϕ(s′)⟩
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for any s, s′ ∈ X ×A. Context-actions pairs are written as sm,i := (xm,i, am,i) ∈ X ×A and
Sm := {s1,0, . . . , snm,m} denoting the history of all context-actions pairs seen up until the end
of batch m. Km is the kernel matrix of all context-actions seen until the end of the batch
m ≥ 1. Eventually, KS(s

′) is the kernel column vector [k(s1, s′), . . . , k(sl, s′)]⊤ of size |S| = l.
Ym = [−y0,1, · · · − y0,n0 , · · · − ym,1, · · · − ym,nm ] denotes the vector of concatenated rewards
observed up until the end of the batch m.

At a batch m, a context xm,i is sampled for i ∈ {1, nm}, and then to sample an action a,
the following decision rule is applied:

a ∈ argmax
a∈A

q̂m,i,a. (3.45)

In batch Kernel UCB, q̂m,i,a is defined as

q̂m,i,a = µ̂m,i,a + βmσ̂m,i,a, (3.46)

where

µ̂m,i,a = KSt−1

(
(xm,i, a)

)⊤
K−1

m−1Ym−1

σ̂2m,i,a =
1

λ
k
(
(xm,i, a), (xm,i, a)

)
− 1

λ
KSm−1

(
(xm,i, a)

)⊤
K−1

m−1KSm−1

(
(xm,i, a)

)
,

and βm is a theoretical parameter that is set to βm = 1√
m

in practical heuristics (Lattimore
and Szepesvári, 2020). In SBPE (Han et al., 2020), q̂m,i,a is defined directly as

q̂m,i,a = KSt−1

(
(xm,i, a)

)⊤
K−1

m−1Ym−1. (3.47)

Algorithm 8: Batch bandit - SBPE (Han et al., 2020) and Kernel UCB (Valko et al.,
2013)

Input: Logged observations (x0,i, a0,i, y0,i, π0,i)i=1,...,n0 , λ regularization and
exploration parameters, k the kernel function

initialization
Kλ = [k(s0,i, s0,j)]1≤i,j≤n0 + λI, Y0 = [−y0,i]1≤i≤n0

for m = 1 to M do
for i = 1 to nm do

Observe context xi,m
Choose ai,m ← argmaxa∈A q̂m,i,a using Eq. (3.47) or (3.46)

end
Observe losses yi,m for all i in past batch {1, . . . , nm}
Update Ym ← [−y0,1, · · · − y0,n0 , · · · − ym,1, · · · − ym,nm ]
Update the translated gram matrix Kλ ← [k(si,p, sj,p)]1≤i,j≤np,1≤p≤m + λI

end

SBPE (Han et al., 2020) uses a linear modelling, therefore we used a linear kernel. For the
Kernel UCB (Valko et al., 2013) method, we used Gaussian and Polynomial kernels in our
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experiments. Note also that no regularization parameter λ is used in SBPE so we set λ = 0 in
our experiments, and for K-UCB we chose λ in the grid [1e0, 1e1, 1e2].

Note in particular that we adapted the batch bandit baselines to the CRM setting by
benefiting the initialization with the logged dataset to set the gram matrix Kλ as well as the
reward vector Y0 with information from the logging data. This modification changes the
original methods which take random actions at initializations.

Eventually, the baselines were carefully optimized using the Jax library (https://github
.com/google/jax) to allow for just in time compilations of algebraic blocks in both methods
and to maximize their scaling capacity.

RL baselines In order to compare our method to the two known off-policy online RL algo-
rithm PPO (Schulman et al., 2017) and TRPO (Schulman et al., 2015), we do the following:

1. we use the stable_baselines3(Raffin et al., 2021) library for the implementation. When
necessary we call multiple times the model PPO or TRPO, to have buffer size of geometrical
increase.

2. we initialize the ActorCriticPolicy with a simpler MLP model having only one layer
with output dimension of 1, (with argument net_arch= [1], that is mathematically
the same modelling as in CRM and SCRM baselines).

3. At the initial step only and to enable a fair comparison with counterfactual methods
using a logging dataset, we pretrain the RL policies to imitate the actions sampled from
the logging policy: we process by multiple step of the Adam optimizer, minimizing a
loss being the sum of 2 terms:

• a MSE term between the sampled action of the ActorCriticPolicy for the contexts
in the n0 instances, and the actions sampled by the logging policy.

• the ENTROPY term guaranteeing to keep a minimum of exploration in order to
initialize the RL algorithm (−∑ pi log(pi))

4. we combine the 2 last terms with a linear combinaison with hyperparameters being tuned
a posteriori, i.e. LOSS = MSE + λ ENTROPY with the hyperparam λ ∈ {.5, 1, 2, 5, 10}

3.13. Additional empirical results

3.13.1. SCRM compared to CRM

We provide here the additional plot in the Pricing setting.

3.13.2. Evaluation of IPS-IX

We provide here the plots for the whole setting considered in policy evaluation with
IPS-IX.

3.13.3. Exploration/Exploitation tradeoff

In this part we give the details used for the experiment described in Section 3.6.3. We
consider again Example 3.3.1 with the Gaussian parametrized policies πθ = N (θ, σ2) and a

https://github.com/google/jax
https://github.com/google/jax
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Figure 3.9: Test loss as a function of sample size on Pricing, Advertising (from left to right).
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Figure 3.10: Comparison of IPS estimators on a Cosine reward and series of shifted Gaussian policies.
Setup (left), Bias (middle left), Variance (middle right), Average IPS weight (right). IPS-IX shows a low

bias and compares favorably to IPS and SNIPS in terms of variance.

loss lt(a) = (a− yt)2− 1 where yt ∼ N (θ∗, σ∗2) with σ∗ = 0.3. Recall that πθ0 = N (θ0, σ). We
consider a grid of σ ∈ [0.1, 0.3, 1, 3] and consider θ∗ = 1. Our experiment aims at illustrating
the influence of sequential exploration that is an important detail of the SCRM and CRM
principles.
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4
Contextual Bandits: an efficient

algorithm for Kernel UCB

In this chapter, we tackle the computational efficiency of kernelized UCB algorithms in
contextual bandits. While standard methods require a O(CT 3) complexity where T is the
horizon and the constant C is related to optimizing the UCB rule, we propose an efficient
contextual algorithm for large-scale problems. Specifically, our method relies on incremental
Nyström approximations of the joint kernel embedding of contexts and actions. This allows
us to achieve a complexity ofO(CTm2) wherem is the number of Nyström points. To recover
the same regret as the standard kernelized UCB algorithm, m needs to be of order of the
effective dimension of the problem, which is at most O(

√
T ) and nearly constant in some

cases.

This chapter is based on the following material:

H. Zenati, A. Bietti, E. Diemert, J. Mairal, M. Martin, and P. Gaillard. Efficient ker-
nelized ucb for contextual bandits. In International Conference on Artificial Intelligence
and Statistics (AISTATS), 2022

116
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4.1. Introduction
Contextual bandits for sequential decision making have become ubiquitous in many

applications such as online recommendation systems (Li et al., 2010). At each round, an
agent observes a context vector and chooses an action; then, the environment generates a reward
based on the chosen action. The goal of the agent is to maximize the cumulative reward over
time, which requires a careful balancing between exploitation (maximizing reward using past
observations) and exploration (increasing the diversity of observations).

In this paper, we consider a kernelized contextual bandit framework, where the rewards
are modeled by a function in a reproducing kernel Hilbert space (RKHS). In other words, we
assume the expected reward to be linear with respect to a joint context-action feature map of
possibly infinite dimension. This setup provides flexible modeling choices through the feature
map for both discrete and continuous action sets, and exploration algorithms typically rely on
constructing confidence sets for the parameter vector and exploring using upper confidence
bound (UCB) rules (Li et al., 2010). The extensions to infinite-dimensional feature maps we
consider has been introduced by Krause and Ong (2011); Valko et al. (2013) using kernelized
variants of UCB, which allow effective exploration even for rich non-parametric reward
functions lying in a RKHS, such as smooth functions over contexts and/or actions.

Despite the rich modeling capabilities of such kernelized UCB algorithms, they lack
scalability since standard algorithms scale at best as O(CT 3) where T is the horizon (total
number of rounds) and the constant C is the cost of selecting an action according to the
UCB optimization rule. This large cost is due to the need to solve linear systems involving
a t × t kernel matrix at each round t, and motivates developing efficient versions of these
algorithms for large problems. In supervised learning, a common technique for reducing
computation cost is to leverage the fact that the kernel matrix is often approximately low-rank,
and to use Nyström approximations (Williams and Seeger, 2001; Rudi et al., 2015). We extend
such approximations to the contextual bandit setting, by relying on incremental updates of a
dictionary of Nyström anchor points, which allows us to reduce the complexity to O(CTm2),
where m is the final number of dictionary elements. In order to preserve a small regret
comparable to the vanilla kernel UCB method, m is of the order of an effective dimension
quantity, which is typically much smaller than T , and at most

√
T .

Closely related to our work, Calandriello et al. (2019, 2020) recently considered Nyström
approximations in the non-contextual setting with finite actions, corresponding to a Bayesian
optimization problem. Whereas their algorithm is effective when there are no contexts, a
direct extension to the contextual setting yields a complexity of O(Tm3), which may be
O(T 2.5) in the worst case, despite a batching strategy allowing to recompute a new dictionary
only about m times. In contrast, our incremental strategy reduces the previous complexity to
O(Tm2), and thus at most O(T 2).

Even though adopting an incremental strategy for updating the Nyström dictionary may
seem to be a simple idea, achieving the previously-mentioned complexity while preserving
a regret that is comparable to the original kernel UCB approach is non-trivial. Nyström
approximations cause dependencies in the projected kernel matrix that makes it difficult to
use martingale arguments, which led Calandriello et al. (2020) to use other mathematical
tools that are compatible with updates resampling a new Nyström dictionary. In contrast, we
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manage to use martingale arguments for an incremental strategy that is less computationally
expensive. For that, we extend the standard analysis of the OFUL algorithm for linear
bandits (Abbasi-yadkori et al., 2011; Chowdhury and Gopalan, 2017) to the kernel setting with
Nyström approximations. In particular, this requires non-trivial extensions of concentration
bounds to infinite-dimensional objects. Our analysis also uses the incremental structure of the
projections that Calandriello et al. (2019) do not have. This allows us to prove the complexity
of our algorithm. Moreover, unlike previous works, we explicit the regret-complexity trade-off
under the capacity condition assumption. Finally, we also provide numerical experiments
showing that our theoretical gains are also observed in practice.

Algorithm Regret Space Time Complexity
CGP-UCB (Krause and Ong, 2011) O(

√
Tdeff(λ, T )) O(T 2) O(CT 3)

SupKernelUCB (Valko et al., 2013) O(
√
Tdeff(λ, T ) log(C)) O(T 2) O(CT 3)

C-BKB (Calandriello et al., 2019) O(
√
T (
√
λdeff(λ, T ) + deff(λ, T )) O (Tdeff) O

(
T 2d2eff + CTd2eff

)
C-BBKB (Calandriello et al., 2020) O(

√
T (
√
λdeff(λ, T ) + deff(λ, T )) O (Tdeff) O

(
Td3eff + CTd2eff

)
K-UCB (ours) O(

√
T (
√
λdeff(λ, T ) + deff(λ, T )) O(T 2) O(CT 3)

EK-UCB (ours) O(
√
T (
√
λdeff(λ, T ) + deff(λ, T )) O (Tdeff) O(CTd2eff)

Table 4.1: Comparison of regret bounds (up to logarithmic factors in T ) and total time complexity.
When the action space is finite, for e.g in SupKernelUCB, we write C = |A| its cardinality and note

that the argmax is obtained in C computations of the UCB rule. Note that the reported regret of
CGP-UCB, SupKernel UCB and CBBKB use here the definition of the effective dimension deff(λ, T ) in

Eq. (4.7) which depends on the horizon T and the parameter λ (i.e the inverse of the GP noise in
CGP-UCB, BKB and BBKB). This effective dimension deff is equivalent, up to logarithmic factors, to

the information gain used by Srinivas et al. (2010); Calandriello et al. (2020) and the definition used by
Valko et al. (2013) (see Appendix 4.7). Moreover, we report the complexities of the contextualized

versions of BKB and BBKBs, noting that the non-contextual versions may benefit from certain
optimizations when the action space is discrete (Calandriello et al., 2019, 2020).

4.2. Related Work
UCB algorithms are commonly used in the bandit literature to carefully balance explo-

ration and exploitation by defining confidence sets on unknown reward functions (Lattimore
and Szepesvári, 2020). For stochastic linear contextual bandits, the OFUL algorithm (Abbasi-
yadkori et al., 2011) obtains improved guarantees compared to previous analyses (e.g.,, Li et al.,
2010) by providing tighter confidence bounds based on self-normalized tail inequalities.

Extensions of linear contextual bandits and UCB algorithms to infinite-dimensional
representations of contexts or actions have been studied by Krause and Ong (2011) and Valko
et al. (2013) by using kernels and Gaussian processes. While their analyses involve different
concepts of effective dimension, it can be shown that these are closely related (see Section 4.3.3).
Valko et al. (2013) notably achieves a better scaling in the horizon in the regret, but requires
a finite action space. Chowdhury and Gopalan (2017) improves the analysis of GP-UCB
using tools inspired by Abbasi-yadkori et al. (2011) and similar to our analysis of kernel-UCB,
though it considers the non-contextual setting. Tirinzoni et al. (2020) in the contextual
linear bandit problem use a primal-dual algorithm to achieve an optimal asymptotical regret
bound but does not address the issue of computational complexity nor the kernelized setting.
Likewise, Camilleri et al. (2021) propose a new estimator in the non-contextual kernelized
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bandit problem to achieve a tighter regret bound using an elimination algorithm but does no
focus on computational efficiency neither.

In the Bayesian experimental design literature Derezinski et al. (2020) propose an ef-
ficient sampling scheme using determinant point processes in the non-kernel case and a
non-contextual framework. For improving the computational complexity of kernelized UCB
procedures in a non-contextual setting as well, Calandriello et al. (2019) use a Nyström
approximation of the kernel matrix which is recomputed at each step. Because the corre-
sponding algorithm is not practical when a large number of steps are needed, Calandriello
et al. (2020) consider a batched version, which significantly improves its computation and
complexity.

In contrast, we use an incremental construction based on the KORS method (Calandriello
et al., 2017a), which has been used previously with full information feedback (see also
Jézéquel et al., 2019), allowing us to significantly improve the computational complexity
of the contextual GP-UCB algorithm, for the same regret guarantee. Such an incremental
approach appears to be a key to achieve better complexity than a natural contextual variant
of the algorithm of Calandriello et al. (2020), see Table 4.1, both in theory and in practice (see
Section 4.5). Such an extension is unfortunately non-trivial and requires a different regret
analysis, as discussed earlier.

Mutnỳ and Krause (2019) also study kernel approximations for efficient variants of GP-
UCB, focusing on random feature expansions. Nevertheless, the number of random features
may need to be very large–often exponential in the dimension–in order to achieve good regret,
due to a misspecification error which requires stronger, uniform approximation guarantees.
Finally, Kuzborskĳ et al. (2019) also considers leverage score sampling for computational
efficiency, but focuses on linear bandits in finite dimension.

4.3. Warm-up: Kernel-UCB for Contextual Bandits
In this section, we introduce stochastic contextual bandits with reward functions lying in

a RKHS, and provide an analysis of the Kernel-UCB algorithm (similar to GP-UCB) which
will be a starting point for studying the computationally efficient version in Section 4.4.

Notations. We define here basic notations. Given a vector v ∈ Rd we write its entries
[vi]1≤i≤d and we will write v⊤w or ⟨v, w⟩H the dot product for elements in Rd and in the
Hilbert spaceH. We denote by ∥ · ∥ the Euclidean norm and the norm inH. The conjugate
transpose for a linear operator L on H is denoted by L∗. For two operators L,L′ on H, we
write L ≼ L′ when L− L′ is positive semi-definite and we use ≲ for approximate inequalities
up to logarithmic multiplicative or additive terms. A summary of the notations is provided
in Appendix 4.7.

4.3.1. Setup

In the contextual bandit problem, at each time t in 1, . . . , T , where T is the horizon, for
each context xt in X , an action at in A is chosen by an agent and induces a reward rt in R.
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The input and action spaces X and A can be arbitrary (e.g., finite or included in Rd for some
d ≥ 1). Note that Amay change over time, but we keep it fixed here for simplicity.

In this paper, we focus on stochastic kernel contextual bandits and assume that there
exists a reproducing kernel Hilbert space (RKHS)H such that

rt = ⟨θ∗, ϕ(xt, at)⟩H + εt ,

where εt are i.i.d. centered subGaussian noise, θ∗ ∈ H is an unknown parameter, and
ϕ : X ×A → H is a known feature map associated toH. It satisfies

⟨ϕ(x, a), ϕ(x′, a′)⟩H = K
(
(x, a), (x′, a′)

)
,

where K is a positive definite kernel associated toH. We assume K to be bounded, i.e., there
exists κ > 0 such that K(s, s) ≤ κ2 for any s ∈ X ×A.

Thus, the goal of the agent is, given the previously observed contexts, actions and rewards
(xs, as, rs)s=1...t−1 and the current context xt, to choose an action at in order to minimize the
following regret after T rounds

RT := E

[
T∑
t=1

max
a∈A
⟨θ∗, ϕ(xt, a)⟩H −

T∑
t=1

rt

]
. (4.1)

4.3.2. Algorithm: Kernel-UCB

Upper confidence algorithm (UCB) algorithms maintain for each possible action an
estimate of the mean reward as well as a confidence interval around that mean, and then
chooses at each time the highest upper confidence bound. Formally, if we have a confidence
set Ct ⊂ H based on samples (xt′ , at′ , yt′), for t′ ∈ {1, . . . , t− 1} that contains the unknown
parameter vector θ∗ with high probability, we may define

K-UCBt(a) = max
θ∈Ct
⟨θ, ϕ(xt, a)⟩H (4.2)

as an upper bound on the mean pay-off ⟨θ∗, ϕ(xt, a)⟩H of a. To choose the highest upper
confidence bound from the confidence set at time t, the algorithm then selects:

at ∈ argmax
a∈A

K-UCBt(a). (4.3)

We then build an empirical estimate of the unknown quantity θ∗ using regression. More
precisely in the kernelized setting, we use the regularized least square estimator with

θ̂t ∈ argmin
θ∈H

{ t∑
s=1

(⟨θ, ϕ(xs, as)⟩H − rs)2 + λ∥θ∥2
}
. (4.4)

Rearranging the terms φs = ϕ(xs, as) and writing Vt =
∑T

s=1 φs ⊗φs + λI , we obtain that the
analytical solution for Eq. (4.4) is θ̂t = V −1

t

∑t
s=1 φsrs. The previous solution from time t− 1

then defines the center of the ellipsoidal confidence set

Ct = {θ ∈ H : ∥θ − θ̂t−1∥Vt−1 ≤ βt(δ)}. (4.5)
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where ∥θ∥2V = θ⊤V θ, and βt(δ) is its radius (see Lemma 4.3.1). With Ct in that form, we can
write the solution of Eq. (4.2) as

K-UCBt(a) = ⟨θ̂t−1, ϕ(xt, a)⟩H + βt(δ)
1/2∥ϕ(xt, a)∥V −1

t−1
. (4.6)

Indeed, by defining B2 = {x ∈ Rd : ∥x∥2 ≤ 1} the unit ball with the Euclidean norm, it
is easy to see that Ct = θ̂t + βt(δ)

1/2V
−1/2
t−1 B2. Then, for θ ∈ B2 maximising the quantity

⟨θ, ϕ(xt, a)⟩H = ϕ(xt, a)
⊤θ̂t−1 + βt(δ)

1/2ϕ(xt, a)
⊤V

−1/2
t−1 θ gives Eq. (4.6).

4.3.3. Regret analysis

We provide an analysis of the regret of the kernelized UCB rule in Eq. (4.6) using standard
statistical analysis definitions of the effective dimension.

Let us write the operator Φt : H → Rt such that Φ∗
t = [φ1, . . . φt], where φi = ϕ(xi, ai)

for i ∈ [1, t]. Let us define Kt the kernel matrix associated to kernel K and the set of pairs
(x1, a1), . . . , (xt, at), Kt = ΦtΦ

∗
t is a t× t matrix. We define the effective dimension of a kernel

matrix as in Hastie et al. (2001) and will use the following in our work.

Definition 4.3.1. The effective dimension of the matrix KT is defined as,

deff(λ, T ) := Tr(KT (KT + λIT )
−1) . (4.7)

In what follows, for simplicity of notation, we abbreviate deff(λ, T ) to deff unless we use
different parameters on deff . To extend the analysis of OFUL (Abbasi-yadkori et al., 2011) to
the contextual kernel UCB algorithm, we will use the following proposition that has been
proved and used by Jézéquel et al. (2019).

Proposition 4.3.1. For any horizon T ≥ 1, λ > 0 and all input sequences (x1, a1), . . . , (xT , aT )

T∑
k=1

log

(
1 +

λk(KT )

λ

)
≤ log

(
e+

eTκ2

λ

)
deff ,

where λk(KT ) denotes the k-th largest eigenvalue of KT .

We now provide a regret bound extending the analysis of Abbasi-yadkori et al. (2011)
to the kernel setting. In particular, we start by providing an upper bound on the ellipsoid
greater axis.

Lemma 4.3.1. Let δ ∈ (0, 1) and define βt+1(δ) by

√
λ∥θ∗∥+

√
2 log

1

δ
+ log

(
e+

etκ2

λ

)
deff .

Then, with probability at least 1− Tδ, for all t ∈ [T ]∥∥θ̂t − θ∗∥∥Vt
≤ βt+1(δ). (4.8)
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We use this lemma (which relies on Proposition 4.3.1 whose proof is in Appendix 4.7) to
bound the distance between the estimated parameter θ̂t at each round t and the true parameter
θ∗. By combining this result with Proposition 4.3.1, we then prove the following theorem that
extends the LinUCB upper bound result from Lattimore and Szepesvári (2020).

Theorem 4.3.1. Let T ≥ 2 and θ∗ ∈ H. Assume that |⟨ϕ(x, a), θ∗⟩H| ≤ 1 for all a ∈ ⋃T
t=1At ⊂ A

and x ∈ X . Then, the K-UCB rule defined in Eq. (4.3) for the choice Ct as in (4.5) with parameter
λ > 0, and δ = 1/T 2, satisfies the pseudo-regret bound

RT ≲
√
T
(
∥θ∗∥

√
λdeff + deff

)
,

where ≲ hides logarithmic factors in T .

The proof of Theorem 4.3.1 and the precise statement of the regret bound are given in
Appendix 4.7.

In particular, assuming the norm of the true parameter θ⋆ to be bounded, we obtain the
following corollary with a capacity condition on the effective dimension.

Corollary 4.3.1. Assuming the capacity condition deff ≤ (T/λ)α for 0 ≤ α ≤ 1 , the regret of K-UCB
is bounded as RT ≲ T

1+3α
2+2α with an optimal λ ≈ T α

1+α .

As an example, if we consider a kernel that is a tensor product between a linear kernel on
contexts and a Sobolev-type kernel (e.g.,, a Matern kernel) of order s on actions, with s > d/2
(where d is the dimension of the continuous action space), then we may consider that the
kernel eigenvalues decay as i−2s/d, leading to an effective dimension as above with α = d/2s,
and a regret of T

1
2

2s+3d
2s+d .

Discussion. We note that this regret is not optimal for such problems, but matches the regret
of most other kernel or Gaussian process optimization algorithms (see, e.g.,, Scarlett et al.,
2017). More precisely, our analysis recovers classical rates of the GP-UCB algorithm (Srinivas
et al., 2010; Chowdhury and Gopalan, 2017), and extends them to the contextual bandit
setting. We note that the analysis of Chowdhury and Gopalan (2017) further removes some
logarithmic factors, and similar improvements may be obtained in our setting since it is
based on similar tools. The SupKernelUCB algorithm by Valko et al. (2013) obtains improved
dependencies on T in the regret bounds, but requires a finite set of actions, and therefore is
not directly comparable to ours. The CGP-UCB algorithm by Krause and Ong (2011) obtains
similar results to ours in the contextual setting, but uses a different analysis. Our result is
therefore not new, and our analysis is meant as a starting point for the efficient variant based
on incremental Nyström approximations, which will be introduced in the sequel.

We note that these works use different notions than our effective dimension deff to
characterize complexity, namely the information gain

γ(λ, t) =
1

2
log

(
det

(
I +

1

λ
Kt

))
used by Krause and Ong (2011) as well as the different effective dimension definition in (Valko
et al., 2013)

d̃(λ, t) = min{j : jλ log T ≥
∑
k>j

λK(Kt)}.
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It can be shown that these are equivalent up to logarithmic factors to our definition of the
effective dimension deff (see Appendix 4.7). This allows us to compare up to logarithmic
factors the algorithm regrets, as shown in Table 4.1.

4.4. Efficient Kernel-UCB
In this section, we introduce our efficient kernelized UCB (EK-UCB) algorithm based

on incremental Nyström projections. We begin by extending the ellipsoidal confidence
bounds from the previous section to the case with projections on finite-dimensional linear
subspaces of the RKHS. Then, we present our main algorithm and analyze its complexity and
regret.

4.4.1. Upper confidence bounds with projections

In this section, we study the UCB updates and corresponding high-probability confidence
bounds for our EK-UCB algorithm. Because these steps do not depend on a specific choice of
projections, we consider generic projection operators onto subspaces of the RKHS, noting
that the next sections will consider specific choices based on Nyström approximations.

At round t ≥ 1, we consider a generic subspace H̃t of H, and let Pt : H → H̃t be the
orthogonal projection operator on H̃t, so that PtH = H̃t. For a fixed regularization parameter
λ > 0, we consider the following regularized estimator restricted to H̃t:

θ̃t ∈ argmin
θ∈H̃t

{ t∑
s=1

(⟨θ, ϕ(xs, as)⟩H − rs)2 + λ∥θ∥2
}
. (4.9)

Define Ṽt =
∑t

s=1 Ptφs ⊗ Ptφs + λI , which may be written Ṽt = PtFtPt + λI where Ft =
Φ∗
tΦt : H → H is the covariance operator. Recalling the notation Yt = (r1, . . . , rt)

⊤, we obtain
that θ̃t = Ṽ −1

t PtΦ
∗
tYt. We may then define the following ellipsoidal confidence set:

C̃t :=
{
θ ∈ H : ∥θ − θ̃t−1∥Ṽt−1

≤ β̃t(δ)
}
, (4.10)

for some radius β̃t(δ) to be specified later. Note that the ellipsoid is not necessarily contained
inside the projected space H̃t, and may in fact include θ∗ even if θ∗ /∈ H̃t. This is a crucial
difference with random feature kernel approximations (Mutnỳ and Krause, 2019), for which a
standard confidence set would be finite dimensional, and thus generally does not include θ∗;
this leads to larger regret due to misspecification, unless the number of random features is
very large in order to ensure good uniform approximation. We may then define the following
upper confidence bounds, which still rely on the original feature map ϕ:

EK-UCBt(a) := max
θ∈C̃t
⟨θ, ϕ(xt, a)⟩H. (4.11)

This may again be written in closed form as

EK-UCBt(a) = ⟨θ̂t−1, ϕ(xt, a)⟩H + β̃t(δ)
1/2∥ϕ(xt, a)∥Ṽ −1

t−1
.

We note that for appropriate choices of H̃t, such a quantity can be explicitly computed
using the kernel trick, as we discuss in Section 4.4.3. The following lemma shows that C̃t is a
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Algorithm 9: Incremental KORS subroutine (Calandriello et al., 2017a)
Input: Time t, past dictionary Z , context-action st, regularization µ, accuracy ε,

budget γ
Compute the leverage score τ̃t from Z, st, µ, ε ;
Compute p̃t = min{γτ̃t, 1} ;
Draw zt ∼ B(p̃t) and if zt = 1, add st to Z ;
Result: Dictionary Z

valid confidence set, which contains θ∗ with high probability, provided that the projection
captures well the dominating directions in the covariance operator.

Lemma 4.4.1. Let δ ∈ (0, 1). Define β̃t+1(δ) as

(√
λ+
√
µt

)
∥θ∗∥+

√
4 log

1

δ
+ 2 log

(
e+

etκ2

λ

)
deff ,

where µt := ∥(I − Pt)F
1/2
t ∥2. Then, with probability at least 1− Tδ, for all t ∈ [T ]∥∥θ̃t − θ∗∥∥Ṽt

≤ β̃t+1(δ). (4.12)

The quantity µt controls how well the projection operator Pt captures the dominating
eigen-directions of the covariance operator, and should be at most of order λ in order for the
confidence bounds to be nearly as tight as for the vanilla K-UCB algorithm. The next section
further discusses how this quantity is controlled with incremental Nyström projections.

4.4.2. Learning with incremental Nyström projections

We now consider specific choices of the projections Pt and subspaces H̃t obtained by
Nyström approximation (Williams and Seeger, 2001; Rudi et al., 2015). In particular, the
spaces H̃t now take the form

H̃t = Span
{
ϕ(s), s ∈ Zt

}
, (4.13)

where Zt ⊂ {(x1, a1), . . . (xt, at)} is a dictionary of anchor points taken from the previously
observed data. Our approach consists of constructing the dictionaries Zt incrementally, by
adding new observed examples (xt, at) on the fly when deemed important, so that we
have Z1 ⊂ Z2 · · · ⊂ Zt. We achieve this using the Kernel Online Row Sampling (KORS)
algorithm of Calandriello et al. (2017a), shown in Algorithm 9, which decides whether to
include a new sample st = (xt, at) by flipping a coin with probability proportional to its
leverage score (Mahoney and Drineas, 2009). More precisely, an estimate τ̃ of the leverage score
that uses the state feature φt and parameters µ, ε is used to assess how a given state is useful
to characterize the dataset. More details on the KORS algorithm are given in Appendix 4.7.

We state the following proposition of Calandriello et al. (2017a, Theorem 1, with ε = 1/2),
which will be useful for our regret and complexity analyses.



4.4. Efficient Kernel-UCB 125

Proposition 4.4.1. Let δ > 0, n ≥ 1, µ > 0. Then the sequence of dictionaries Z1 ⊂ Z2 ⊂ . . .ZT

learned by KORS with parameters µ > 0, ε = 1/2 and γ = 12 log(T/δ) satisfies with probability
1− δ, ∀t ≥ 1

∥(I − Pt)F
1/2
t ∥2 ≤ µ and |Zt| ≤ 9deff(µ, T ) log(2T/δ)

2 .

Additionally, the algorithm runs inO(deff(µ, T )2) time andO(deff(µ, T )2 log(T )4) space per iteration.

This result shows that when choosing µ ≈ λ, then KORS will maintain dictionaries of
size at most deff (up to log factors), while guaranteeing that the confidence bounds studied in
Section 4.4.1 are nearly as good as for the case of K-UCB.

4.4.3. Implementation and complexity analysis

Here, we analyze the complexity of the algorithm and describe its practical implementation.
Recall that at each round t the agent chooses an action a that maximises the UCB rule
µt,a + β̃tσt,a where we use Eq. (4.11) to reformulate the mean term µt,a = ⟨θ̂t−1, ϕ(xt, a)⟩H
and the variance term σ2t,a = ∥ϕ(xt, a)∥2Ṽ −1

t−1

. We use the representer theorem on the projection
space Ht to derive efficient computations of the latter two terms instead of using a kernel
trick with t× t gram matrices. Indeed, in the next proposition, we prove that the two terms
can be expressed with mt ×mt matrices instead, where mt = |Zt| is the size of the dictionary
at time t. We use the notations KSt(s

′) for the kernel column vector [K(s1, s
′), . . . ,K(st, s

′)]⊤,
where St = {si}i=1...t are the past states, and KA,B for the matrix of kernel evaluations
[K(s, s′)]s∈A,s′∈B.

Proposition 4.4.2. At any round t, by considering st,a = (xt, a), the mean and variance term of the
EK-UCB rule can be expressed with:

Γt = KZt−1St−1Yt−1

Λt =
(
KZt−1St−1KSt−1Zt−1 + λKZt−1Zt−1

)−1

µ̃t,a = KZt−1(st,a)
⊤ΛtΓt

∆t,a = KZt−1(st,a)
⊤
(
Λt −

1

λ
K−1

Zt−1Zt−1

)
KZt−1(st,a)

σ̃2t,a =
1

λ
K(st,a, st,a) + ∆t,a.

The algorithm then runs in a space complexity of O(Tm) and a time complexity of O(CTm2).

In our algorithm, the incremental updates of the projections allow us to derive rank-one
updates of the expressionsΛt,Γt,K

−1
ZtZt

in all cases. First, when the dictionary does not change
(i.e Pt = Pt−1), the update of themt×mt matrix Λt can be performed with Sherman-Morrison
updates, and the term Γt = KZt−1St−1Yt−1 can also benefit from a rank-one update given the
latest reward and state. Both updates are performed in no more than O(m2

t ) time and space.
Second, when the dictionary changes (i.e Pt ≻ Pt−1), the matrix Λt can be updated in two
stages with a rank-one update using Sherman-Morrison on the states as if the dictionary
did not change, in O(m2

t ) time and space, and second rank-one update on the dictionary
using the Schur complement in O(tmt + m2

t ) time and space. Similarly, we can update
Γt = KZtSt−1Yt−1 with a first update on the states and stacking a block of size 1× t in O(tmt)
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Algorithm 10: Efficient Kernel UCB
Input: T the horizon, λ regularization and exploration parameters, K( the kernel

function, ε > 0, γ > 0
Initialization;
Context x0, a0 chosen randomly and reward r0 ;
S = {(x0, a0)}, YS = [r0] Z = {(x0, a0)} ;
Λt = (KZSKSZ + λKZZ)

−1 Γt = KZSYS ;
for t = 1 to T do

Observe context xt ;
Choose β̃t (e.g as in Lem. 4.4.1, and δ = 1

T 2 ) ;
Choose at ← argmaxa∈A µ̃t,a + β̃tσ̃t,a ;

µ̃t,a ← KZ(st,a)
⊤ΛtΓt ;

∆t,a = KZ(st,a)
⊤ (Λt − 1

λK
−1
ZZ
)
KZ(st,a) σ̃

2
t,a ← 1

λK(st,a, st,a) + ∆t,a ;
Observe reward rt and st ← (xt, at) ;
YS ← [YS , rt]

⊤,S ← S ∪ {st} ;
Z ′ ← KORS(t,Z,KZ(st), λ, ε, γ) ;
if Z ′ = Z then

Incremental inverse update Λt with st;
Γt+1 ← Γt + rtKZ(st) ;

end
else

z = Z ′ \ Z ;
Incremental inverse update Λt with st, z ;
Incremental inverse update K−1

ZZ with z;
Γt+1 ← [Γt + rtKZ(st), KS(z)

⊤YS ]
⊤

end
end

space and time. Eventually, the inverse of the dictionary gram matrix K−1
ZtZt

is updated with
Schur complement in O(m2

t ). Besides, the second case when the projection is updated occurs
at most m times and the first case at most T times. When the UCB rule is computed on C
discrete actions or when we assume that it can be optimized using O(C) evaluations, given
that the KORS algorithm runs in O(m2) time and space, our algorithm has a total complexity
of O(CTd2eff) in time and O(Tdeff) in space, using that m ≈ deff . Note that, as in all UCB
algorithms, including ours, the theoretical value for β̃t in Lemma 4.4.1 is hard to estimate and
often too pessimistic and leads to over-exploration, as discussed by Calandriello et al. (2020).
In practice, choosing a fixed value has shown to perform well in our experiments.

In contrast, the non-incremental approach of Calandriello et al. (2020) in the BBKB
algorithm needs to recompute a new dictionary about deff times. Each update involves the
computation of a new covariance matrix KZSKSZ which costs O(tm2

t ) operations for its
contextual variant1, yielding an overallO(Td3eff)withm ≈ deff , as illustrated in Table 4.1.

1The original BBKB algorithm does not involve contexts and consider a finite set of actions, allowing to
compute the covariance matrix in O(min(t, |A|)m2

t ).
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4.4.4. Regret analysis

We now analyze the regret of the EK-UCB algorithm, using Proposition 4.4.1 as well as
Lemma 4.4.1.

Theorem 4.4.1. Let T ≥ 1 and θ∗ ∈ H. Assume that |⟨ϕ(x, a), θ∗⟩H| ≤ 1 for all a ∈ ⋃T
t=1At ⊂ A

and x ∈ X . Then, the EK-UCB algorithm with regularization λ along with KORS updates with
parameter µ satisfies the regret bound

RT ≲
√
T

(√
µm

λ
+
√
deff

)(
∥θ∗∥(

√
λ+
√
µ)+

√
deff

)
,

where m := |ZT |. In particular, the choice µ = λ yields m ≲ deff and the bound

RT ≲
√
T
(
∥θ∗∥

√
λdeff + deff

)
.

Furthermore, the algorithm runs in O(Tm) space complexity and O(CTm2) time complexity.

The regret bound is again given up to logarithmic factors and we detail the proof as
well as the precise bound in Appendix 4.7. As for K-UCB, one may analyze the resulting
regret under a capacity condition, and when µ ≈ λ, we obtain the same guarantees as in
Corollary 4.3.1. Note that our analysis leverages the fact that the dictionary is constructed
incrementally, in particular using a condition Pt ⪰ Pt−1, which yields the approximation
term

√
µm/λ. Had we used fixed projections with some operator P , this approximation term

would instead be
√
µ/λ with µ = ∥(I − P )F 1/2

T ∥2.
As a consequence of this theorem, the following corollary analyzes when the approxima-

tion terms dominate the regret, i.e when the dictionary size does not suffice to recover the
original regret bound.

Corollary 4.4.1. Assuming the capacity condition deff ≤ (T/λ)α for 0 ≤ α ≤ 1 . Let m ≥ 1, under
the assumptions of Thm. 4.4.1, the regret of EK-UCB satisfies

RT ≲

{
Tm

α−1
2α if m ≤ T α

1+α

T
1+3α
2+2α otherwise

for the choice λ = µ = Tm−1/α.

The proof is postponed to Appendix 4.7. In a practical setting, the dictionary size is
controlled by the choice of the projection parameter µ. When µ is too high, it induces a smaller
dictionary size m but thus linear regret as indicated in the previous corollary. However, by
choosing a low µ, we still recover the original regret but increase the size of the dictionary
and thus pay a higher computation time. To recover the original regret, the regularization
parameter λ must be set to µ in all cases to recover the original regret, and both values have a
theoretical optimal value which depends on the horizon to recover the best convergence rate
under the capacity condition assumption.

4.5. Numerical Experiments
We now evaluate our proposed EK-UCB approach empirically on a synthetic scenario, in

order to illustrate its performance in practice. All algorithms have been carefully optimized
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Figure 4.1: ’Bump’ setting: Regret and running times of EK-UCB, CBBKB, CBKB, SupKUCB and
K-UCB, with T = 1000 and λ = 10 (see Corollary 4.3.1 and 4.4.1). EK-UCB matches the best

theoretical regret-time compromise when the projection parameter µ = λ. We show other values of µ:
higher µ (µ = 100) leads to faster computational time but worse regret, and reciprocally (µ = 1) leads

to worse computational time and better regret. Additional results where λ and µ change
simultaneously are available in the Appendix 4.7.

for fair comparisons.2 More experimental details, discussions, and additional experimental
results are provided in Appendix 4.7.

Experimental setup. We consider a ’Bump’ synthetic environment with contexts uniformly
distributed in [0, 1]p, with p = 5, and actions in [0, 1]. The rewards are generated using
the function r(x, a) = max(0, 1 − ∥a − a∗∥1 − ⟨w∗, x − x∗⟩H) for some a∗, w∗ and x∗ picked
randomly and fixed. We also consider additional 2D synthetic settings ’Chessboard’ and ’Step
Diagonal’ presented in Appendix 4.7. We use a Gaussian kernel in this setting. We run our
algorithms for T = 2000 steps and average our results over different 3 random runs.

Baselines. In our experiments, we chose to compare to K-UCB, SupK-UCB and to works
which focus on improving the O(T 3) time-complexity for the kernel case. We implemented
K-UCB, SupK-UCB (SupKernelUCB, Valko et al. (2013)), EK-UCB (our efficient version of
the K-UCB algorithm) as well as our contextual adaptation of the BKB (Calandriello et al.,
2019) and BBKB (Calandriello et al., 2020) algorithms; we will refer to these respectively
as CBKB and CBBKB. Specifically, we use the same accumulation criteria as Calandriello
et al. (2020) for the “resparsification” strategies (i.e., the resampling of the dictionary) with
a threshold parameter C. We also proceed to the same sampling and equation updates as
the original algorithms while using our joint kernel on context-action pairs. Note also that
CGP-UCB/K-UCB only differ from their parameter βt and match the same algorithm in our
implementation (see second last paragraph in Sec. 4.3).

Results. We report the average regret and running times of the algorithms over different
runs in Fig. 4.1 and Fig. 4.2 to analyze how the the different algorithms perform. In particular,
our algorithm (EK-UCB) achieves low regret while running in low computational time.

In the first example for the ’Bump’ environment in Fig. 4.1, for T = 2000, we have
set λ = 10 (of the order of

√
T ) and see that the value of µ = λ indeed achieves a good

2The code with open-source implementations for experimental reproducibility is available at https://github
.com/criteo-research/Efficient-Kernel-UCB.

https://github.com/criteo-research/Efficient-Kernel-UCB
https://github.com/criteo-research/Efficient-Kernel-UCB
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Figure 4.2: ’Chessboard’ setting: Regret and running times of EK-UCB (λ = µ), CBBKB (C = 10) and
CBKB, with T = 2000 and with varying λ. We notice that low λ values have better regrets but higher
computatinal times. Overall EK-UCB achieves the best regret-time compromise for all parameters of λ

while CBBKB sometimes improves upon the K-UCB complexity but has both higher regret than
EK-UCB and higher computational time.

tradeoff between regret and time. The parameter µ determines the quality of the projection
required in the algorithm. Thus, for a smaller µ, the algorithm achieves a better regret but
pays a higher time complexity. We note that a similar role is played by the parameter C in
the BBKB algorithm. The smaller C, the more frequent the dictionary updates, and thus the
slower is the algorithm. While the CGP-UCB/K-UCB obtains the best regret, we note also,
that EK-UCB (µ = 1), CBKB (which is CBBKB with C = 1) essentially take the full dictionary
m ≈ T and thus also match K-UCB, but with dictionary building computational overheads
which make them more computationally intensive than K-UCB itself. In the Appendix 4.7 we
provide additional results that show that consistently EK-UCB provides the best time-regret
compromise with regards to K-UCB.

Second, in Fig. 4.2 we show for the ’Chessboard’ setting the influence of varying λ for
all methods (fixing µ = λ for EK-UCB). Both CBBKB and EK-UCB improve upon the K-UCB
computational time in this case, but EK-UCB achieves lower computational times while also
having lower regrets than CBBKB for all settings. We also notice that the CBKB algorithm
runs much slower than the CBBKB algorithm in all experiments, as expected due to its
costly dictionary update at every round which requires processing all previous points. The
computational overheads of its dictionary building therefore makes it not practical despite its
theoretical guarantees. Note also that CBBKB uses scores based on the variance estimates
on past states for its “resparfication” strategy and EK-UCB uses leverage scores to build its
dictionary thus looking for directions that are orthogonal to the previous anchor points;
both approaches are more effective than updating the dictionary at each round. Eventually,
recall that our incremental projection scheme allows us to perform rank-one updates of
the dictionary. This also contributes to the practical speedup of our EK-UCB algorithm, as
compared to the CBBKB strategy.

Moreover, SupK-UCB performs poorly in our experiments due to its over-exploring
elimination strategy that might be beneficial only for large T and makes it unpractical in its
current time-complexity. Note that the main author of SupK-UCB co-authored Calandriello
et al. (2019) where it is mentioned that it indeed has "tighter analysis than GP-UCB [but] does
not work well in practice".
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4.6. Discussions
In this work, we proposed a method for contextual kernel UCB algorithms in large-scale

problems. The EK-UCB algorithm runs in O(Tdeff) space and O(CTd2eff) time complexity,
which significantly improves over the standard contextual kernel UCB method. Note that
while previous efficient Gaussian process algorithms allow to scale up the learning problems
in non contextual and discrete action environments, we have shown how the incremental
projection updates were crucial to perform efficient approximations in the joint context-action
space, providing the same regret guarantees for a smaller computational cost. We note that
the batching strategy of BBKB may still be useful even under our incremental updates, and
thus provides an interesting avenue for future work. Another natural question is whether we
may obtain algorithms with better regret guarantees similar to Valko et al. (2013) in the finite
action case, while also achieving gains in computational efficiency as in our work.
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4.7. Appendices
This appendix is organized as follows:

– Appendix 4.7: notations for the analysis
– Appendix 4.7: proofs of Section 4.3 – Kernel-UCB
– Appendix 4.7: proofs of Section 4.4 – Efficient Kernel-UCB
– Appendix 4.7: details on the implementation of the algorithms
– Appendix 4.7: additional experiment details, discussions and results

4.8. Notations

Below are notations related to the sequential setting. Here, t ∈ [T ] denotes the index of
the round:

– st := (xt, at) ∈ X ×A is a state at round t
– St := {s1, . . . , st} denotes the history
– ε1, . . . , εT are independent centered sub-Gaussian noise
– Ht := (ε1, . . . , εt)

⊤ is the vector of noises up to round t
– Ft := σ(ε1, . . . , εt) is the natural filtration with respect to (εi)i≥1

– rt := ⟨θ∗, ϕ(xt, at)⟩H + εt is the reward
– Yt := (r1, . . . , rt)

⊤ ∈ Rt is the vector of rewards
– φt := ϕ(xt, at) ∈ H
Below are notations related to the RKHS. Here, t ∈ [T ] denotes the index of the

round:
– Ft :=

∑t
s=1 φs ⊗ φs is the covariance operator

– Vt :=
∑t

s=1 φs ⊗ φs + λI : H → H is the regularized covariance operator
– Φt : H → Rt is the operator such that [Φtφ]i = φ(xi, ai) = ⟨φ, ϕ(xi, ai)⟩H for any φ ∈ H

and i ∈ [t]
– Φ∗ denotes the conjugate transpose of a linear operator Φ onH
– Kt := ΦtΦ

∗
t : Rt → Rt is the kernel matrix at time t ≥ 1. Note that [Kt]ij =

K((xi, ai), (xj , aj)).
– λi(Kt) is the i-th largest eigenvalue of Kt

– deff(λ, t) := Tr(Kt(Kt + λIt)
−1) is the effective dimension of the matrix Kt

Below are notations related to the Kernel-UCB algorithm without projections:
– θ̂t := V −1

t Φ∗
tYt is the estimator of the algorithm

– δ > 0 is the confidence level
– βt(δ) is the radius of the confidence ellipsoid of the algorithm
– Ct :=

{
θ ∈ H :

∥∥θ − θ̂t−1

∥∥
Vt−1

≤ βt(δ)
}

is the confidence ellipsoid played by the
algorithm

Below are notations related to the Kernel-UCB algorithm with projections. All along the
analysis, the notation x̃ corresponds to the projected version of the object x.

– Zt ⊂
{
(x1, a1), . . . , (xt, at)

}
is a dictionary

– H̃t := Span
{
ϕ(s), s ∈ Zt

}
is a linear subspace ofH and is used at round t.
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– Pt : H → H̃t is the Euclidean projection ontoH so that H̃t = {Ptφ,φ ∈ H}
– Ṽt :=

∑t
s=1(Ptφs)⊗ (Ptφs) + λI = PtFtPt + λI is the regularized projected covariance

operator
– θ̃t := PtṼ

−1
t PtΦ

∗
tYt is the projected estimator of the algorithm

– C̃t :=
{
θ ∈ H : ∥θ−θ̃t−1∥Ṽt−1

≤ β̃t(δ)
}

is the confidence ellipsoid related to the projected
estimator

– µt :=
∥∥(I − Pt)F

1/2
t

∥∥2 is the approximation error of the projection
Eventually, we provide notations related to the kernel matrix computations when we

write the update rules of the efficient algorithm.
– KS(s

′) is the kernel column vector [K(s1, s
′), . . . ,K(sl, s

′)]⊤ of size |S| = l. Note that
KSt(s) = Φtϕ(s) .

– KZS is the kernel matrix vector [K(z, s)]z∈Z,s∈S of size |Z| × |S|.
– st,a = (xt, a) refers to the pair of context xt and any action a ∈ At that can be chosen in

the UCB rule.

4.9. Proofs of Section 4.3: Kernel UCB
In this appendix we prove of Lemma 4.3.1 and Theorem 4.3.1.

4.9.1. Proof of Lemma 4.3.1

We first prove Lemma 4.3.1, which controls the size of the confidence intervals considered
by the algorithm. It states that with probability 1− δ, for all t ≥ 1:

θ∗ ∈ Ct, where Ct =
{
θ ∈ Rd, ∥θ − θ̂t−1∥Vt−1 ≤ βt(δ)

}
. (4.14)

Lemma 4.3.1. Let δ ∈ (0, 1). Assume κ2 ≥ sups∈X×AK(s, s). Then with probability at least
1− Tδ, for all t ∈ [T ]

∥θ̂t − θ∗∥Vt ≤
√
λ∥θ∗∥+

√
2 log

1

δ
+ log

(
det

(
1

λ
(Kt + λI)

))

≤
√
λ∥θ∗∥+

√
2 log

1

δ
+ log

(
e+

etκ2

λ

)
deff(λ, T ) =: βt+1(δ).

Proof. The analysis is inspired by the one of Abbasi-yadkori et al. (2011) for linear bandits
and uses inequality tails on vector valued martingales. We introduce Mt =

∑t
s=1 φsεs ∈ H,

which is a martingale with regards to the natural filtration Ft := σ(ε1, . . . , εt). Solving the
least-square optimization problem (4.4), θ̂t equals

θ̂t = V −1
t

t∑
s=1

φsYs = V −1
t

t∑
s=1

φs(φ
⊤
s θ

∗+εs) = V −1
t ((Vt − λId)θ∗ +Mt) = θ∗−λV −1

t θ∗+V −1
t Mt .

Multiplying by the square root of Vt and using the triangle inequality∥∥∥V 1/2
t

(
θ̂t − θ∗

)∥∥∥ =
∥∥∥− λV −1/2

t θ∗ + V
−1/2
t Mt

∥∥∥ ≤ λ∥∥V −1/2
t θ∗

∥∥+ ∥∥V −1/2
t Mt

∥∥ .
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On the other hand, given that Vt = Ft+λI where Ft is positive semi-definite, V −1/2
t ≼ λ−1/2I

and thus
λ∥V −1/2

t θ∗∥ ≤ λ 1√
λ
∥θ∗∥ =

√
λ∥θ∗∥ .

We now prove for the other term that with probability at least 1− δ

∥V −1/2
t Mt∥ ≤

√
2 log

1

δ
+ log det

1

λ
(Kt + λI) .

Step 1: Martingales For all ν ∈ H, we define the random-variable

St,ν = exp
(
ν⊤Mt −

1

2
ν⊤Vtν

)
and now show that it is a Ft-super-martingale. First, note that the common distribution of the
ε1, . . . , εt is 1-sub Gaussian, i.e., for all Ft−1-measurable real-valued random variable νt−1,
we have

E
[
exp(νt−1εt)|Ft−1

]
≤ exp

(ν2t−1

2

)
. (4.15)

Thus, using that Mt =Mt−1 + φtεt and Vt = Vt−1 + φt ⊗ φt,

E [St,ν |Ft−1] = E
[
exp

(
ν⊤Mt −

1

2
ν⊤Vtν

)
|Ft−1

]
= E

[
St−1,ν exp

(
ν⊤φtεt −

1

2
ν⊤(φt ⊗ φt)ν

)
|Ft−1

]
= St−1,ν E

[
exp

(
ν⊤φtεt −

1

2
(ν⊤φt)

2
)∣∣Ft−1

]
≤ St−1,ν ,

where the last inequality is by applying (4.15) with νt−1 = ν⊤φt since φt = ϕ(xt, at) is
Ft−1-measurable. Therefore, St,ν is a Ft-super-martingale for any ν ∈ H, and

E
[
St,ν

]
≤ E

[
S0,ν

]
= exp

(
− λ

2
∥ν∥2

)
. (4.16)

Rewriting St,ν in its vertex form with m = Vt−1Mt yields

St,ν = exp

(
−1

2
(ν −m)⊤Vt(ν −m)

)
× exp

(1
2

∥∥V −1/2
t Mt

∥∥2) ,
which substituted into (4.16) entails

E

[
exp

(
− 1

2
(ν −m)⊤Vt(ν −m)

)
× exp

(1
2

∥∥V −1/2
t Mt

∥∥2)] ≤ exp
(
− λ

2
∥ν∥2

)
, ∀ν ∈ H .

(4.17)

Step 2: Laplace’s method integrating

Now, following Laplace’s method which is standard for the proof of LinUCB, the goal
is to integrate both sides of the above expression. Let us first rewrite it in order to consider
finite dimensional objects thanks to the Kernel trick.
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Recalling Vt := Φ∗
tΦt + λI and Kt := ΦtΦ

∗
t , following (Valko et al., 2013), we will use the

following identities:

(Φ∗
tΦt + λI)Φ∗

t = Φ∗
t (ΦtΦ

∗
t + λI) (4.18)

⇒ VtΦ
∗
t = Φ∗

t (Kt + λI) (4.19)
⇒ Φ∗

t (Kt + λI)−1 = V −1
t Φ∗

t . (4.20)

Let x ∈ Rt and write ν = V −1
t Φ∗

tx ∈ H and recall that m = V −1
t Mt = V −1

t Φ∗
tHt, where

Ht = (ε1, . . . , εt)
⊤. We have

exp
(
− 1

2
(ν −m)⊤Vt(ν −m)

)
= exp

(
− 1

2
(x−Ht)

⊤ΦtV
−1
t VtV

−1
t Φ∗

t (x−Ht)
)

= exp
(
− 1

2
(x−Ht)

⊤ΦtΦ
∗
t (Kt + λI)−1(x−Ht)

)
← by (4.20)

= exp
(
− 1

2
(x−Ht)

⊤Kt(Kt + λI)−1(x−Ht)
)

← Kt = ΦtΦ
∗
t

= exp
(
− 1

2
(x−Ht)

⊤K
1/2
t (Kt + λI)−1K

1/2
t (x−Ht)

)
, (4.21)

where the last equality is because (Kt + λI)−1 and K1/2
t commute. Similarly,

exp
(
− λ

2
∥ν∥2

)
= exp

(
− λ

2
x⊤K

1/2
t (Kt + λI)−2K

1/2
t x

)
.

Combining with (4.16) and (4.21) thus gives for any x ∈ Rt,

E

[
exp

(
− 1

2
(x−Ht)

⊤K
1/2
t (Kt + λI)−1K

1/2
t (x−Ht)

)
× exp

(1
2

∥∥V −1/2
t Mt

∥∥2)]
≤ exp

(
− λ

2
x⊤K

1/2
t (Kt + λI)−2K

1/2
t x

)
. (4.22)

Now, that we are back to finite dimensional space, the idea would consists in integrating both
parts over x ∈ Rt. But the matrix Kt may be non-invertible, we thus need a few more steps to
integrate over Im(Kt) only.

Let dt = rank(Kt) and Qt ∈ Rt×dt the matrix formed by the orthonormal eigenvectors
of Kt with non-zero eigenvalues. Let u ∈ Rdt then Qtu ∈ Im(Kt) and there exists x ∈ Rt

such that K1/2
t x = Qtu. Defining z ∈ Rdt such that Qtz = K

1/2
t Ht and substituting into

Inequality (4.22) yields, for any u ∈ Rdt

E

[
exp

(
− 1

2
(u− z)⊤Q⊤

t (Kt + λI)−1Qt(u− z)
)
× exp

(1
2

∥∥V −1/2
t Mt

∥∥2)]
≤ exp

(
− λ

2
u⊤Q⊤

t (Kt + λI)−2Qtu
)
. (4.23)

Now, we integrate both sides over u ∈ Rdt , recognizing a multidimensional Gaussian density,
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we have∫
Rd

exp
(
− 1

2
(u− z)⊤Q⊤

t (Kt + λI)−1Qt(u− z)
)
dµ(u) =

√
det
(
2π(Q⊤

t (Kt + λI)−1Qt)−1
)

=

√√√√(2π)dt
dt∏
i=1

(
λi(Kt) + λ

)
,

where λi(Kt) is the i-th largest eigenvalue of Kt. Similarly

∫
Rd

exp
(
− λ

2
u⊤Q⊤

t (Kt + λI)−2Qtu
)
dµ(u) =

√
det
(
2πλ−1

(
Q⊤

t (Kt + λI)−2Qt

)−1
)

=

√√√√(2π
λ

)dt dt∏
i=1

(
λi(Kt) + λ

)2
.

Therefore, by the Fubini-Tonelli theorem, plugging the last two equations into Inequal-
ity (4.23) entails√√√√(2π)dt

dt∏
i=1

(
λi(Kt) + λ

)
E

[
exp

(1
2

∥∥V −1/2
t Mt

∥∥2)] ≤
√√√√(2π

λ

)dt dt∏
i=1

(
λi(Kt) + λ

)2
,

which, after reorganizing the terms, yields

E

[
exp

(1
2

∥∥V −1/2
t Mt

∥∥2)] ≤
√√√√ dt∏

i=1

(
1 +

λi(Kt)

λ

)
=

√
det(Kt + λI)

λt
.

Step 3: Markov-Chernov bound. It remains to upper-bound the above expectation using
concentration inequalities. For u > 0,

P
(
∥V −1/2

t Mt∥ > u
)
= P

(
∥V −1/2

t Mt∥2
2

>
u2

2

)
≤ exp

(
−1

2
u2
)

E

[
exp

(
1

2
∥V −1/2

t Mt∥2
)]

≤ exp

(
−u

2

2
+

1

2
log

det(Kt + λI)

λt

)
= δ

(4.24)

for the claimed choice

u =

√
2 log

1

δ
+ log det

1

λ
(Kt + λI) .

The proof then concludes by using Prop. 4.3.1 on the log det 1
λ(Kt + λI) term and by applying

a union bound.
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4.9.2. Proof of Theorem 4.3.1

We are now ready to prove Theorem 4.3.1, which upper-bounds the regret of K-UCB.

Theorem 4.3.1. Let T ≥ 2 and θ∗ ∈ H. Assume that |⟨ϕ(x, a), θ∗⟩H| ≤ 1 and ∥ϕ(x, a)∥ ≤ κ for all
a ∈ ⋃T

t=1At ⊂ A and x ∈ X . Then, the K-UCB rule defined in Eq. (4.3) for the choice Ct as in (4.5)
satisfies the pseudo-regret bound

RT ≤ 2 + 2

√
T

(
log

(
e+

eTκ2

λ

)
deff(λ, T )

)[√
λ∥θ∗∥+

√
2 log(T ) + log

(
e+

eTκ2

λ

)
deff(λ)

]
≲
√
T
(
∥θ∗∥

√
λdeff(λ, T ) + deff(λ, T )

)
.

Proof. Let δ ∈ (0, 1/2). By Lemma 4.3.1, with probability 1− Tδ,

∀t ∈ [T ], θ∗ ∈ Ct . (4.25)

Step 1: Small instantaneous regrets under the event (4.25). Assume that (4.25) holds. Let

a∗t := max
a∈At

⟨ϕ(xt, a), θ∗⟩H and ∆t := ⟨ϕ(xt, a∗t )− ϕ(xt, at), θ∗⟩H

be respectively the optimal decision and the instantaneous regret at round t. We also define

ρt ∈ argmax
θ∈Ct

{
⟨ϕ(xt, at), θ⟩H

}
.

Since θ∗ ∈ Ct, we have

⟨ϕ(xt, a∗t ), θ∗⟩H ≤ max
θ∈Ct

{⟨ϕ(xt, a∗t ), θ⟩H} = K-UCBt(a
∗
t )

≤ K-UCBt(at) = max
θ∈Ct

{⟨ϕ(xt, at), θ⟩H} = ⟨ϕ(xt, at), ρt⟩H ,

which entails because θ∗ and θ̃t−1 belong to Ct,

∆t = ⟨ϕ(xt, a∗t )− ϕ(xt, at), θ∗⟩H ≤ ⟨ϕ(xt, at), ρt − θ∗⟩H
≤ ∥ϕ(xt, at)∥V −1

t−1
∥ρt − θ∗∥Vt−1 ≤ 2∥ϕ(xt, at)∥V −1

t−1
βt(δ) .

Recall that φt := ϕ(xt, at). Then, summing over t = 1, . . . , T and using that by assumption

|∆t| ≤
∣∣⟨ϕ(xt, a∗t ), θ∗⟩H∣∣+ ∣∣⟨ϕ(xt, at), θ∗⟩H∣∣ ≤ 2 sup

x∈X ,a∈At

|⟨ϕ(x, a), θ∗⟩H| ≤ 2 ,
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we can write the cumulative regret as

T∑
t=1

∆t ≤
√
T
∑T

t=1∆
2
t ← Cauchy-Schwartz’s inequality

≤ 2

√
T
∑T

t=1min{∥φt∥2V −1
t−1

βt(δ)2, 1}

≤ 2βT (δ)

√
T
∑T

t=1min{∥φt∥2V −1
t−1

, 1} ← 1 ≤ βt(δ) ≤ βT (δ)

≤ 2βT (δ)

√
T
∑T

t=1 log
(
1 + ∥φt∥2V −1

t−1

)
← min(u, 1) ≤ 2 log(1 + u), ∀u > 0 .

(4.26)

Now we will use the kernel trick to obtain a formulation of φ⊤
t V

−1
t−1φt using gram

matrices. Define st := (xt, at) and St := (si)1≤i≤t the historical data. For any l ≥ 1 and
S ∈ (X ×A)l, we also denote by KS(s

′) the kernel column vector [K(s1, s
′), . . . ,K(sl, s

′)]⊤

of size |S| = l. Specifically, we have KSt−1(st) := [K(s1, st), . . . ,K(st−1, st)]
⊤ = Φt−1φt ∈ Rt.

When multiplying Vt−1 := Φ∗
t−1Φt−1 + λI by φt on the right, we can express

Vt−1φt = Φ∗
t−1KSt−1 (st) + λφt,

⇒ φt = V −1
t−1Φ

∗
t−1KSt−1 (st) + λV −1

t−1φt

⇒ φt = Φ∗
t−1(Kt−1 + λI)−1KSt−1 (st) + λV −1

t−1φt ,

where the last equation is by Eq. (4.20). Thus, multiplying now by φ⊤
t on the left and using

φ⊤
t Φ

∗
t−1 = KSt−1(st) entails

φ⊤
t φt = KSt−1 (st)

⊤ (Kt−1 + λI)−1KSt−1 (st) + λφ⊤
t V

−1
t−1φt .

Therefore, reorganizing the terms ans recognizing ∥φt∥2V −1
t−1

= φ⊤
t V

−1
t−1φt andK(st, st) = φ⊤

t φt,
we can write

1+∥φt∥2V −1
t−1

= 1 + φ⊤
t V

−1
t−1φt

=
λ+K(st, st)

λ
− 1

λ
KSt−1(st)

⊤(Kt−1 + λI)−1KSt−1(st)

=
λ+K(st, st)

λ

(
1−KSt−1(st)

⊤(Kt−1 + λI)−1KSt−1(st)
(
λ+K(st, st)

)−1
)

=
λ+K(st, st)

λ
det

(
1−KSt−1(st)

⊤(Kt−1 + λI)−1KSt−1(st)
(
λ+K(st, st)

)−1
)

=
λ+K(st, st)

λ
det

(
I − (Kt−1 + λI)−1/2KSt−1(st)

(
λ+K(st, st)

)−1
KSt−1(st)

⊤(Kt−1 + λI)−1/2

)
,

where the last equality follows by the matrix determinant lemma det(I+AB⊤) = det(I+B⊤A)
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if A and B are n-by-m matrices. Then, 1 + ∥φt∥2V −1
t−1

equals

λ+K(st, st)

λ
det

(
(Kt−1+λI)

−1/2
(
Kt−1+λI−KSt−1(st)

(
λ+K(st, st)

)−1
KSt−1(st)

⊤
)
(Kt−1+λI)

−1/2

)

=
λ+K(st, st)

λ

det
(
Kt−1 + λI −KSt−1(st)

(
λ+K(st, st)

)−1
KSt−1(st)

⊤
)

det(Kt−1 + λI)
.

Now, using that

Kt + λI =

[
Kt−1 + λI KSt−1(st)
KSt−1(st)

⊤ K(st, st) + λ

]
,

by the block matrix determinant formula

det
(
Kt + λI

)
= (K(st, st) + λ) det

(
Kt−1 + λI −KSt−1(st)(K(st, st) + λ)−1KSt−1(st)

⊤
)

we finally get

1 + ∥φt∥2V −1
t−1

=
1

λ

det(Kt + λI)

det(Kt−1 + λI)
. (4.27)

Note here that contrary to the proof in Lattimore and Szepesvári (2020), we used here
computations using the gram matrix Kt instead of the Vt which lives in the feature space that
can be infinite dimensional.

Taking the log and summing over t = 1, . . . , T telescopes

T∑
t=1

log
(
1 + ∥φt∥2V −1

t−1

)
= log

(
det

(
1

λ
(Kt + λI)

))
≤ log

(
e+

eTκ2

λ

)
deff(λ, T ) ,

where we used the Proposition 4.3.1 for the last inequality and that . Substituting into the
regret bound (4.26) together with βT (δ) ≤ βT+1(δ) entails with probability at least 1− Tδ

T∑
t=1

∆t ≤ 2βT+1(δ)

√
T

(
e+

eTκ2

λ

)
deff(λ, T ) .

Choosing δ = 1/T 2, taking the expectation RT = E
[∑T

t=1∆t

]
and using |∆t| ≤ 2 concludes.

We now provide a proof for the Corollary that gives out the convergence speed of the
K-UCB algorithm with the capacity condition assumption.

4.9.3. Proof of Corollary 4.3.1

Corollary 4.3.1. Assuming the capacity condition deff ≤ (T/λ)α for 0 ≤ α ≤ 1, the regret of K-UCB
is bounded as RT ≲ T

1+3α
2+2α with an optimal λ ≈ T α

1+α .
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Proof. Starting from RT ≲
√
T
(√

λdeff(λ) + deff(λ)
)

and assuming the capacity condition

deff(λ) ≲
(
T
λ

)α
for some α ∈ (0, 1),

RT ≲
√
T
(√

Tαλ1−α + Tαλ−α
)
.

Minimizing in λ > 0 entails
√
Tαλ1−α = Tαλ−α ⇒ λ∗ = T

α
1+α ,

which yields for λ = λ∗

RT ≲ T
1
2
+α− α2

1+α = T
1+3α
2+2α .

4.10. Proofs of Section 4.4: Efficient Kernel-UCB
Let us start by recalling the setting and the notation of this section. Let Zt ⊆ St,

H̃t := Span
{
ϕ(s), s ∈ Zt

}
be the corresponding linear subspace ofH, and Pt : H → H̃t be the

Euclidean projection ontoH so that H̃t = {Ptφ,φ ∈ H}. The EK-UCB algorithm also builds
an estimator

θ̃t−1 ∈ argmin
θ∈H̃t−1

{ t−1∑
s=1

(⟨θ, ϕ(xs, as)⟩H − rs)2 + λ∥θ∥2
}
∈ H̃t−1 , (4.28)

and uses the confidence set C̃t :=
{
θ ∈ H : ∥θ − θ̃t−1∥Ṽt−1

≤ β̃t(δ)
}

. We define

Ṽt :=
t∑

s=1

(Ptφs)⊗ (Ptφs) + λI

,

that we rewrite Ṽt = PtFtPt + λI where Φ∗
t = [φ1, . . . , φt] and Ft = Φ∗

tΦt. Recalling the
notation, Yt := (r1, . . . , rt)

⊤, we then obtain that θ̃t = PtṼ
−1
t PtΦ

∗
tYt. We recall the definition

µt :=
∥∥(I − Pt)F

1/2
t

∥∥2.
4.10.1. Proof of Lemma 4.4.1

The following lemma serves to compute the distance of the center θ̃t to any point in the
ellipsoid in the projected space H̃t. Note that the norm uses the geometry induced by the
direction matrix Ṽt.

Lemma 4.4.1. Let δ ∈ (0, 1). Assume that sups∈X×AK(s, s) ≤ κ2. Then, with probability 1− δ,
for all t ≥ 1

∥θ̃t − θ∗∥Ṽt
≤
(√

λ+
√
µt

)
∥θ∗∥+

√
4 log

1

δ
+ 2 log det

(Kt + λI

λ

)
≤
(√

λ+
√
µt

)
∥θ∗∥+

√
4 log

1

δ
+ 2 log

(
e+

etκ2

λ

)
deff(λ, T ) := β̃t+1(δ) ,

where ∥θ∥2V = θ⊤V θ.
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Proof. Let t ≥ 1. Note that PtVtPt = Pt(Ft + λI)Pt = PtṼt = ṼtPt and consequently as well
PtṼ

−1
t = Ṽ −1

t Pt. We can write with Ht := (ε1, . . . , εt)
⊤,

θ̃t = PtṼ
−1
t PtΦ

∗
tYt

= Ṽ −1
t PtΦ

∗
tYt ← PtṼ

−1
t = Ṽ −1

t Pt

= Ṽ −1
t PtΦ

∗
t (Φtθ

∗ +Ht)

= Ṽ −1
t PtFtPtθ

∗ + Ṽ −1
t PtFt(I − Pt)θ

∗ + Ṽ −1
t PtΦ

∗
tHt

= θ∗ − λṼ −1
t θ∗ + Ṽ −1

t PtFt(I − Pt)θ
∗ + Ṽ −1

t PtΦ
∗
tHt .

To obtain later on the norm ∥θ̃t − θ∗∥Ṽt
, we multiply by Ṽ 1/2

t on the left

Ṽ
1/2
t (θ̃t − θ∗) = −λṼ −1/2

t θ∗︸ ︷︷ ︸
(i)

+ Ṽ
−1/2
t PtFt(I − Pt)θ

∗︸ ︷︷ ︸
(ii)

+ Ṽ
−1/2
t PtΦ

∗
tHt︸ ︷︷ ︸

(iii)

. (4.29)

We then compute each norm separately.

(i) Since Ṽt = PtFtPt + λI , all its eigenvalues are larger than λ. Thus, Ṽ −1/2
t ≼ λ−1/2I , which

implies ∥∥λṼ −1/2
t θ∗

∥∥ ≤ √λ∥θ∗∥ . (4.30)

(ii) We write
∥∥Ṽ −1/2

t PtFt(I − Pt)θ
∗∥∥ =

∥∥Ṽ −1/2
t PtF

1/2
t F

1/2
t (I − Pt)θ

∗∥∥ and recall Ṽt =

PtF
1/2
t F

1/2
t Pt + λI therefore Ṽ 1/2

t ≽ PtF
1/2
t , which entails∥∥Ṽ −1/2

t PtFt(I − Pt)θ
∗∥∥ ≤ ∥∥F 1/2

t (I − Pt)θ
∗∥∥ ≤ √µt∥θ∗∥ , (4.31)

where we recall that µt :=
∥∥(I − Pt)F

1/2
t

∥∥2 .

(iii) Let us upper-bound the norm of the last term∥∥Ṽ −1/2
t PtΦ

∗
tHt

∥∥ ≤ ∥∥Ṽ −1/2
t PtV

1/2
t

∥∥∥∥V −1/2
t Φ∗

tHt

∥∥
≤
∥∥Ṽ −1/2

t PtV
1/2
t

∥∥√2 log
1

δ
+ log det

( 1
λ
(Kt + λI)

)
, (4.32)

with probability at least 1 − δ, where the last inequality follows from the same analysis
as (4.24). Then, using that PtVtPt = PtFtPt + λPt = Ṽt + λ(Pt − I), we have∥∥Ṽ −1/2

t PtV
1/2
t

∥∥2 = ∥∥Ṽ −1/2
t PtVtPtṼ

−1/2
t

∥∥ =
∥∥Ṽ −1/2

t

(
Ṽt + λ(Pt − I)

)
Ṽ

−1/2
t

∥∥
=
∥∥I + λṼ

−1/2
t (Pt − I)Ṽ −1/2

t

∥∥ ≤ 1 + λ
∥∥Ṽ −1/2

t

∥∥2∥∥Pt − I
∥∥ ≤ 2 ,

where the last inequality is because
∥∥Pt−I

∥∥ ≤ 1 and
∥∥Ṽ −1/2

t

∥∥ ≤ λ−1/2. Therefore, substituting
into Inequality (4.32) yields

∥∥Ṽ −1/2
t PtΦ

∗
tHt

∥∥ ≤√4 log
1

δ
+ 2 log det

( 1
λ
(Kt + λI)

)
, (4.33)

with probability at least 1− δ.
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Finally, combining (4.30), (4.31), and (4.33) with Equation (4.29) concludes∥∥θ̃t − θ∥∥Ṽt
≤ λ

∥∥Ṽ −1/2
t θ∗

∥∥+ ∥∥Ṽ −1/2
t PtFt(I − Pt)θ

∗∥∥+ ∥∥Ṽ −1/2
t PtΦ

∗
tHt

∥∥
≤
(√
λ+
√
µt
)∥∥θ∗∥∥+√4 log

1

δ
+ 2 log det

( 1
λ
(Kt + λI)

)
.

The second line of the statement follows from Proposition 4.3.1.

4.10.2. Proof of Theorem 4.4.1

Theorem 4.4.1. Let T ≥ 1 and θ∗ ∈ H. Assume that |⟨ϕ(x, a), θ∗⟩H| ≤ 1 for all a ∈ ⋃T
t=1At ⊂ A

and x ∈ X then the EK-UCB rule in Eq. (4.4.1) with C̃t defined in Eq. (4.10), withm = |Zt| dictionary
updates, satisfies the pseudo-regret bound

RT ≲
√
T

(√
µm

λ
+
√
deff

)(√
λ+
√
µ+

√
deff

)
.

In particular, the choice µ = λ yields m ≲ deff and

RT ≲
√
T
(
∥θ∗∥

√
λdeff + deff

)
.

Proof. Let δ > 0. By Lemma 4.4.1, with probability 1− δ,

∀t ≥ 1, θ∗ ∈ C̃t . (4.34)

Let us recall and start from the definition of the regret

RT := E

[ T∑
t=1

∆t

]
, where ∆t := ⟨ϕ(xt, a∗t )− ϕ(xt, at), θ∗⟩H and a∗t := max

a∈At

⟨ϕ(xt, a), θ∗⟩H .

Step 1: Small instantaneous regrets under the event (4.34). Assume that (4.34) holds and
define

ρ̃t ∈ argmax
θ∈C̃t

{⟨ϕ(xt, at), θ⟩H} .

Note here that the use of the original feature map allows us to not have any misspecified term
that would have been incurred if the projected feature map was used instead instead with
⟨ϕ(xt, a∗t ), θ∗⟩H = ⟨Ptϕ(xt, a

∗
t ), θ

∗⟩H+ ⟨(I −Pt)ϕ(xt, a
∗
t ), θ

∗⟩H) in the upper bound expression.

Now given that θ∗ ∈ C̃t and at ∈ argmaxa∈A EK-UCBt(a), we have

⟨ϕ(xt, a∗t ), θ∗⟩H ≤ max
θ∈C̃t

{⟨ϕ(xt, a∗t ), θ⟩H} = EK-UCBt(a
∗
t ) ≤ EK-UCBt(at)

= max
θ∈C̃t

{⟨ϕ(xt, at), θ⟩H}

= ⟨ϕ(xt, at), ρ̃t⟩H .
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Therefore,

∆t := ⟨ϕ(xt, a∗t )− ϕ(xt, at), θ∗⟩H ≤ ⟨ϕ(xt, at), ρ̃t − θ∗⟩H
≤ ∥φt∥Ṽ −1

t−1
∥ρ̃t − θ∗∥Ṽt−1

≤ 2∥φt∥Ṽ −1
t−1
β̃t(δ) . (4.35)

Then, summing over t = 1, . . . , T and using |∆t| ≤ 2 and β̃T (δ) ≥ βt(δ) ≥ 1, we get

T∑
t=1

∆t ≤

√√√√T
T∑
t=1

∆2
t ← Cauchy-Schwartz’s inequality

≤ 2

√√√√T

T∑
t=1

min
{
∥φt∥2Ṽ −1

t−1

β̃t(δ)2, 1
}
← |∆t| ≤ 2 and (4.35) (4.36)

≤ 2β̃T (δ)

√√√√T
T∑
t=1

min
{
∥φt∥2Ṽ −1

t−1

, 1
}
← 1 ≤ βt(δ) ≤ βT (δ) . (4.37)

Note now that

min
{
∥φt∥2Ṽ −1

t−1
, 1
}
≤ 2min

{
∥Ptφt∥2Ṽ −1

t−1
+ ∥(I − Pt)φt∥2Ṽ −1

t−1
, 1
}

≤ 2min
{
∥Ptφt∥2Ṽ −1

t−1
, 1
}
+ 2∥(I − Pt)φt∥2Ṽ −1

t−1

≤ 4 log
(
1 + ∥Ptφt∥2Ṽ −1

t−1

)
+ 2∥(I − Pt)φt∥2Ṽ −1

t−1
. (4.38)

The first term can be upper-bounded similarly to (4.27). First, note that since Ps = PsPt−1 for
any 1 ≤ s ≤ t− 1,

Ṽt−1 :=
t−1∑
s=1

(Pt−1φs)⊗ (Pt−1φs) + λI ≽
t−1∑
s=1

(Psφs)⊗ (Psφs) + λI =: W̃t−1

which implies Ṽ −1
t−1 ≼ W̃−1

t−1 and thus

log
(
1 + ∥Ptφt∥2Ṽ −1

t−1

)
≤ log

(
1 + ∥Ptφt∥2W̃−1

t−1

)
. (4.39)

Now, recalling that Vt−1 :=
∑t−1

s=1 φs ⊗ φs + λI , following the same analysis as for (4.27),
replacing φs with Psφs for all s = 1, . . . , t, we get

1 + ∥Ptφt∥2W̃−1
t−1

=
1

λ

det(K̃t + λI)

det(K̃t−1 + λI)
,

where K̃t ∈ Rt×t is the kernel matrix such that
[
K̃t

]
ij

= ⟨Piφi, Pjφj⟩H for all 1 ≤ i, j ≤ t.
Together with Inequalities (4.38) and (4.39), and summing over t = 1, . . . , T , it yields

T∑
t=1

min
{
∥φt∥2Ṽ −1

t−1
, 1
}
≤ 4

T∑
t=1

log

(
1

λ

det(K̃t + λI)

det(K̃t−1 + λI)

)
+ 2

T∑
t=1

∥(I − Pt)φt∥2Ṽ −1
t−1

≤ 4 log

(
det(K̃T + λI)

λt

)
+ 2

T∑
t=1

∥(I − Pt)φt∥2Ṽ −1
t−1

. (4.40)
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We now upper-bound the second term in the right-hand-side. Denoting by 1 = τ1 <
τ2 < · · · < τm ≤ T the indexes in time when the projection is updated, i.e., Pt = Pτi for all
t ∈ {τi, . . . , τi+1 − 1}, we can write

T∑
t=1

∥∥(I − Pt)φt

∥∥2 = m∑
i=1

τi+1−1∑
t=τi

∥∥(I − Pτi)φt

∥∥2
=

m∑
i=1

τi+1−1∑
t=τi

Tr
(
(I − Pτi)φt ⊗ φt(I − Pτi)

)
=

m∑
i=1

Tr

(
(I − Pτi)

( τi+1−1∑
t=τi

φt ⊗ φt

)
(I − Pτi)

)

=

m∑
i=1

Tr

(
(I − Pτi+1−1)

( τi+1−1∑
t=τi

φt ⊗ φt

)
(I − Pτi+1−1)

)

≤
m∑
i=1

Tr

(
(I − Pτi+1−1)

( τi+1−1∑
t=1

φt ⊗ φt

)
(I − Pτi+1−1)

)

≤
m∑
l=1

µτi+1−1 ≤ mµ ,

where the last inequality follows from Prop. 4.4.1. Therefore, using that Ṽ −1
t−1 ≼ λ−1I ,

from (4.38) we get

T∑
t=1

min
{
∥φt∥2Ṽ −1

t−1
, 1
}
≤ 4 log

(
det(K̃T + λI)

λt

)
+

2mµ

λ
.

Substituting into Inequality (4.37) entails

T∑
t=1

∆t ≤ 2β̃T (δ)

√√√√T

(
4 log

(
det(K̃T + λI)

λt

)
+

2mµ

λ

)

≤ 2β̃T (δ)

√
T

(
4 log det

(
KT + λI

λ

)
+

2mµ

λ

)

≤ 2β̃T (δ)

√
T

(
4 log

(
e+

eTκ2

λ

)
deff +

2mµ

λ

)
where the last inequality is by Prop. 4.3.1 and where we recall

β̃T (δ) ≤
(√

λ+
√
µ
)
∥θ∗∥+

√
4 log

1

δ
+ 2 log

(
e+

eTκ2

λ

)
deff .
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Choosing δ = 1/T and taking the expectation concludes

RT ≤ 2 + 2β̃T (1/T )

√
T

(
4 log

(
e+

eTκ2

λ

)
deff +

2mµ

λ

)
≲
(
(
√
λ+
√
µ)∥θ∗∥+

√
deff

)√
T
(
deff +

mµ

λ

)
.

In particular, for the choice µ = λ, by Prop. 4.4.1, the dictionary is at most of size m ≲ deff
with high probability.

4.10.3. Proof of Cor. 4.4.1

Corollary 4.4.1. Assuming the capacity condition deff ≤ (T/λ)α for 0 ≤ α ≤ 1. Let 1 ≤ m ≤
Tα/(1+α), under the assumptions of Thm. 4.4.1, the regret of EK-UCB satisfies

RT ≲

{
Tm

α−1
2α if m ≤ T α

1+α

T
1+3α
2+2α otherwise

for the choice λ = µ = Tm−1/α. Furthermore, the algorithm runs in O(Tm) space complexity and
O(CTm2) time complexity.

We start from the regret bound of Theorem 4.4.1, which, forgetting all dependencies that
do not depend on T , for the choice µ = λ yields

RT ≲
√
T
(√

λdeff + deff
)
.

Under the capacity condition deff(λ, T ) ≤ (T/λ)α, it entails

RT ≲
√
T
(
λ

1−α
2 T

α
2 + λ−αTα

)
= T

1
2
(
T 1/2m

α−1
2α +m

)
= Tm

α−1
2α +

√
Tm ,

where we replaced λ = Tm−1/α. Optimizing in m, we retrieve the original rate RT ≲ T
1+3α
2+2α

for a dictionary of size m = T
α

1+α ≪ T . Note that a larger dictionary is not necessary in
theory since it only hurts both the theoretical rate and the computational complexity. For
a smaller dictionary, the first term is predominant and yields a regret of order O

(
Tm

α−1
2α

)
,

highlighting a trade-off between the complexity which increases with m and the regret which
decreases.

4.11. Details on the comparison of the regret bounds of CGP-UCB,
SupKernelUCB, and K-UCB

In this appendix, we first detail why we can compare the regrets of CGP-UCB (Krause and
Ong, 2011), SupKernelUCB (Valko et al., 2013) and K-UCB as shown in Table 4.1. We compare
the quantities d̃, γ and deff that appear in the regret bound of the literature (Valko et al., 2013;
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Calandriello et al., 2019; Krause and Ong, 2011). We show that they are essentially equivalent
up to logarithmic factors. We recall first their definitions: for any t ≥ 0 and λ > 0

γ(λ, t) =
1

2
log

(
det

(
I +

1

λ
Kt

))
d̃(λ, t) = min{j : jλ log T ≥

∑
k>j

λK(Kt)}

deff(λ, T ) = Tr(KT (KT + λIT )
−1) .

We start by proving the first equality (up to logarithmic factors) deff(λ, t) ≲ γ(λ, t) ≲ deff(λ, t).
We first obtain that γ(λ, t) ≲ deff with Proposition 4.3.1. Next, to prove that deff ≲ γ(λ, t), we
prove that for all x > −1 x

x+ 1
≤ log(1 + x) by writing for x > −1, h(x) = x

x+ 1
− log(1 + x)

studying h′ and h(0). Therefore,

deff(λ, t) = Tr(Kt(Kt+ λI)−1) =
t∑

k=1

λk
λ

λk
λ + 1

≤
t∑

k=1

log(1 +
λk
λ
) = γ(λ, t)

Next we detail that d̃(λ, t) ≲ γ(λ, t) ≲ d̃(λ, t). First, Valko et al. (2013) shows that d̃(λ, t) ≲
γ(λ, t). Second, to prove γ(λ, t) ≲ d̃(λ, t), we write

t∑
k=1

log

(
1 +

λk
λ

)
≤
∑
k>d̃

λk
λ

+
∑
k≤d̃

log(1 +
λk
λ
) ≤ d̃(λ, t) log(t) + d̃(λ, t) log

(
λ1
λ

)
,

where we used log(1+ x) ≤ x on the first term of the sum decomposition, and λ1 the first and
larger eigenvalue of the matrix Kt. Then, using λ1(Kt) ≤ Tr(Kt) =

∑t
k=1 ∥φk∥2 ≤ tκ2, we

subsequently obtain γ(λ, t) ≤ d̃
(
log(T ) + log

(
tκ2

λ

))
which concludes the inequality.

4.12. Algorithm Implementations
Here we give details on the implementations of the contextual kernel UCB algorithms as

well as our EK-UCB.

4.12.1. Kernel UCB algorithm – Implementation details

Let us write st,a := (xt, a) and by abbreviation si := (xi, ai), let us write the historical
data St = (si)1≤i≤t. Let us recall Φ∗

t = [φ1, . . . , φt] where φi = ϕ(xi, ai) = ϕ(si) and
KSt (s) = Φtϕ(s) = [K(s1, s), . . .K(st, s)]

⊤. We write Ft = Φ∗
tΦt and the gram matrix

Kt = ΦtΦ
∗
t . As in (Valko et al., 2013):

(Φ∗
tΦt + λI)Φ∗

t = Φ∗
t (ΦtΦ

∗
t + λI)

(Ft + λI)Φ∗
t = Φ∗

t (Kt + λI)

Φ∗
t (Kt + λI)−1 = (Ft + λI)−1Φ∗

t .

Expression of the mean µ̂t,a = ⟨θ̂t, φt,a⟩H. For the mean expression recall that we have:
µ̂t,a = ⟨θ̂t−1, φt,a⟩H = φ⊤

t,aθ̂t−1 and θ̂t = V −1
t Φ∗

tYt. Therefore,

µ̂t,a = φ⊤
t,aθ̂t−1 = φ⊤

t,aΦ
∗
t−1(Kt−1 + λI)−1Yt−1 = KSt−1 (st,a)

⊤ (Kt−1 + λI)−1Yt−1.
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Expression of the standard deviation σ̂t,a = ∥φt,a∥V −1
t−1

. When multiplying byφt,a := ϕ(xt, a)

on the right and then by φ⊤
t,a on the left

(Φ∗
t−1Φt−1 + λI)φt,a = Φ∗

t−1KSt−1 (st,a) + λφt,a

φt,a = Φ∗
t−1(Kt−1 + λI)−1KSt−1 (st,a) + λ(Φ∗

t−1Φt−1 + λI)−1φt,a

φ⊤
t,aφt,a = KSt−1 (st,a)

⊤ (Kt−1 + λI)−1KSt−1 (st,a) + λφ⊤
t,aV

−1
t−1φt,a

σ̂t,a = ∥φt,a∥V −1
t−1

=
1

λ
k (st,a, st,a)−

1

λ
KSt−1 (st,a)

⊤ (Kt−1 + λI)−1KSt−1 (st,a)

This allows to compute the UCB rule with kernel representations as illustrated in Alg. 11.
Algorithm 11: Kernel UCB

Input: T the horizon, λ regularization and exploration parameters, K( the kernel
function

initialization;
Kλ = λ, Y0 = [r0] where r0 = r(x0, a0) and a0 is chosen randomly ;
for t = 1 to T do

Observe context xt ;
Compute βt ;
Choose at ← argmaxa∈A µ̂t,a + βtσ̂t,a ;

µ̂t,a ← KSt−1 (st,a)
⊤K−1

λ Yt−1 ;
σ̂2t,a ← 1

λk (st,a, st,a)− 1
λKSt−1 (st,a)

⊤K−1
λ KSt−1 (st,a) ;

Observe reward rt and update Yt ← [r1, . . . rt] ;
Update the translated gram matrix Kλ ← [K(si, sj)]1≤i,j≤t + λI ;

end

Since the kernel matrices are used instead of estimating and computing directly θ̂t and
ϕ(xt, a), we can use first-rank updates of the matrices Kt, since:

Kt =

[
Kt−1 KSt−1 (st,a)

KSt−1 (st,a)
⊤ K (st,a, st,a)

]
.

It is then easy to use the Schur complement on the inverse K−1
λ . Specifically, the update is

performed as the following, with

s← k (st,a, st,a) + λ−KSt−1(st,a)
⊤K−1

λ KSt−1(st,a)

Z12 ← −
1

s
KSt−1(st,a)

⊤K−1
λ

Z21 ← −
1

s
K−1

λ KSt−1(st,a)

Z11 ← K−1
λ +

1

s
K−1

λ KSt−1(st,a)KSt−1(st,a)
⊤K−1

λ

K−1
λ ← [Z11, Z12, Z21,

1

s
].

Therefore, while inverting the full matrices would induce as full cost of O(CT 4), using first
order updates with Schur complement allows to run the algorithm in O(CT 3), while using
O(T 2) in space.
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4.12.2. Efficient Kernel UCB algorithm – Implementation details

Instead of using the kernel trick as in the standard algorithm, the efficient Kernel UCB
algorithm uses computations in the projected feature space. The key high-level idea is to use
as much as possible computations in the projected space Ht = span{ϕ(z)}z∈Zt which is of
dimension mt and does not use implicit kernel representation of the whole data which are of
size t× t. Here, we detail the computations of the predicted mean and variance bound in the
projected space.

At the time twe define the dictionaryZt = {z1, . . . , zmt} of size |Zt| = mt and themt×mt

kernel matrix KZt = [K(zi, zj)]1≤i,j≤mt , we also write KZtSt = [K(zi, sj)]1≤i≤mt,1≤j≤t the
mt × t matrix on anchor points and historical data St = {si}1≤i≤t.

The following proposition provides closed-form formulas to implement EK-UCB (Alg. 10).

Proposition 4.4.2. At any round t, by considering st,a = (xt, a), the mean and variance term of the
EK-UCB rule (Alg 10) can be expressed as3

Γt = KZt−1St−1Yt−1

Λt =
(
KZt−1St−1KSt−1Zt−1 + λKZt−1Zt−1

)−1

µ̃t,a = KZt−1(st,a)
⊤ΛtΓt

∆t,a = KZt−1(st,a)
⊤
(
Λt −

1

λ
K−1

Zt−1Zt−1

)
KZt−1(st,a)

σ̃2t,a =
1

λ
K(st,a, st,a) + ∆t,a.

The algorithm then runs in a space complexity of O(Tm) and a time complexity of O(CTm2).

Expression of the mean µ̃t+1,a = ⟨θ̃t, φt+1,a⟩H. At a time t + 1, we look for θ̃ ∈ C̃t+1 that
we write θ̃ = α⊤KZt where α ∈ Rmt . We can rewrite the optimization process in Eq. (4.9)
as

argmin
α∈Rmt

{
(KStZtα− Yt)⊤(KStZtα− Yt) + λα⊤KZtZtα

}
which can be rewritten as

argmin
α∈Rmt

{
α⊤KZtStKStZtα− 2α⊤KZtStYt + λα⊤KZtZtα

}
,

and can be solved in closed-form as

α∗ = (KZtStKStZt + λKZtZ)
−1KZStYt.

This eventually gives the expression µ̃t+1,a = α⊤KZtst+1

µ̃t+1,a = KZt(st+1,a)
⊤(KZtStKStZt + λKZtZt)

−1KZtStYt .

3Erratum: Note that the proposition slightly differs from the original one in the main document due to typos
in the indexes that will be corrected in the final version of the manuscript.
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Expression of the standard deviation σ̃t+1,a = ∥φt+1,a∥Ṽ −1
t

. When we look for the value of
EK-UCB in Eq. (4.11), it is equivalent to have:

EK-UCBt+1(a) = max
θ∈H, s.t ∥θ−θ̃t∥Ṽt≤β

⟨θ, ϕ(st+1,a)⟩H = µ̃t+1,a + βσ̃t+1,a.

where the variance term σ̃t+1,a is solution to

max
θ∈H

θ⊤ϕ(st+1,a) .

s.t ∥θ∥Ṽt
≤ 1.

Below, we abbreviate s = st+1,a := (xt+1, a) for simplicity of notation. We advocate that
at each time t when we solve this maximization problem, θ lives in the finite dimensional
space

θ ∈ Ht+1,s =: Span
(
Kz1 , . . .Kzmt

,Ks

)
,

where Kz,Ks ∈ H such that Kz(z
′) = K(z, z′) and Ks(s

′) = K(s, s′). To prove the above
statement, following the Representer theorem proof, and Ht+1,s be the linear span of
Kz1 , . . .Kzmt

,Ks ∈ H. Ht+1,s is a finite dimensional subspace ofH, therefore any θ ∈ H can
be uniquely decomposed as

θ = θHt+1,s + θ⊥

with θHt+1,s ∈ Ht+1,s and θ⊥ ⊥ Ht+1,s. H being a RKHS it holds that ⟨θ⊥, ϕ(s)⟩H =
⟨θ⊥,Ks⟩H = 0 because Ks ∈ Ht+1,s. Therefore, ⟨θ,Ks⟩H = ⟨θHt+1,s ,Ks⟩H.

Now writing Ṽt = PtVtPt + λ(I − Pt), we have that ∥θ∥Ṽt
can be written as

∥θ∥Ṽt
= θ⊤Ht+1,s

PtVtPtθHt+1,s + λθ⊤Ht+1,s
(I − Pt)θHt+1,s + λθ⊤⊥(I − Pt)θ⊥.

Therefore, ∥θHt+1,s∥Ṽt
≤ ∥θ∥Ṽt

≤ 1. The maximization domain {θ ∈ H s.t ∥θ∥Ṽt
≤ 1} is

thus included in {θ ∈ Ht+1,s s.t ∥θHt+1,s∥Ṽt
≤ 1} , while ⟨θ,Ks⟩H = ⟨θHt+1,s ,Ks⟩H. Therefore,

maxθ∈H⟨θ,Ks⟩H = maxθ∈Ht+1,s⟨θHt+1,s ,Ks⟩H. Hence we can write the solution of the problem
from Eq. (4.4.1) as

θHt+1,s =

mt∑
i=1

αiKzi + αmt+1Ks, α ∈ Rmt , αmt+1 ∈ R.

We will write K̄Ztα =
∑mt

i=1 αiKzi and therefore K̄⊤
Zt
K̄Zt = KZt,Zt or even K̄⊤

Zt
Ks =

KZts ∈ Rmt .

Using this notation allows us to writePtφt+1 =
∑mt

i=1 βi(st+1,a)Kzi = K̄Zt(K
−1
Zt,Zt

KZt(st+1,a))
where the β coefficient is obtained by solving with the minimization problem defined in the
Nyström projection. Therefore when taking the projection Pt : H → Rmt and the operator
Φt : Rt → H we can write PtΦt = K̄Zt(K

−1
Zt,Zt

)KZtSt .

Therefore when writing Ṽt = PtFtPt + λI we can express ∥θ∥Ṽt
as

∥θ∥Ṽt
= [K̄Ztα+ αmt+1Kst ]

⊤[K̄ZtK
−1
Zt,Zt

KZt,StKSt,ZtK
−1
Zt,Zt

K̄⊤
Zt

+ λI][K̄Ztα+ αmt+1Ks].
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This can be reformulated as [
α αmt+1

]
Qt

[
α

αmt+1

]
,

whereQt =

[
At bt
b⊤t ct

]
and for which we haveAt = KZtStKStZt+λKZtZt , b⊤t = KsZtK

−1
ZtZt

KZtStKStZt+

λKsZt and eventually ct = KsZtK
−1
ZtZt

KZtStKStZtK
−1
ZtZt

KZts + λKss

Next to find the variance term, we note qt = [KZts,Kss]
⊤ and reformulate the optimization

process above as

max
α∈Rmt+1

α⊤qt

s.t α⊤Qtα ≤ 1

gives the solution α′ =
Q

−1/2
t qt

∥Q−1/2
t qt∥

which gives σt,a the maximum value:
√
q⊤t Q

−1
t qt. We

will now express the squared maximum σ2t+1,a = q⊤t Q
−1
t qt using the Schur complement on

the Qt matrix.

Defining At = KZtStKStZt + λKZtZt and the Schur complement lt = ct − b⊤t A−1
t bt.

We start by simplifying the expression of the Schur complement. For this we reformu-
late

At = KZtStKStZt + λKZtZt

b⊤t = KsZtK
−1
ZtZt

(At − λKZtZt) + λKsZt

= KsZtK
−1
ZtZt

At

ct = KsZtK
−1
ZtZt

(At − λKZtZt)K
−1
ZtZt

KZts + λKss

= KsZtK
−1
ZtZt

AtK
−1
ZtZt

KZts − λKsZtK
−1
ZtZt

KZts + λKss.

Thus we obtain:

lt = KsZtK
−1
ZtZt

AtK
−1
ZtZt

KZts − λKsZtK
−1
ZtZt

KZts + λKss −KsZtK
−1
ZtZt

AtA
−1
t AtK

−1
ZtZt

KZts

= λ(Kss −KsZtK
−1
ZtZt

KZts).
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Then we write the product between Q−1
t and qt as:

σ̃2t+1,a =
[
KsZt Kss

] [A−1
t + 1

lA
−1
t btb

⊤
t A

−1
t −1

lA
−1
t bt

−1
l b

⊤
t A

−1
t

1
l

] [
KZts

Kss

]
=
[
KsZtA

−1
t + 1

lKsZtA
−1
t btb

⊤
t A

−1
t − 1

lKssb
⊤
t A

−1
t −1

l λKsZtA
−1
t bt +

1
lKss

] [KZts

Kss

]
= KsZtA

−1
t KZts +

1

l
KsZtA

−1
t btb

⊤
t A

−1
t KZts −

1

l
Kssb

⊤
t A

−1
t KZts −

1

l
KsZtA

−1
t btKss +

1

l
K2

ss

= KsZtA
−1
t KZts +

1

l

(
KsZtA

−1
t bt −Kss

)2
= KsZtA

−1
t KZts +

1

l

(
KsZtK

−1
ZtZt

KZts −Kss

)2
= KsZtA

−1
t KZts +

1

λ
Kss −

1

λ
KsZtK

−1
ZtZt

KZts

=
1

λ
K(st,a, st,a) + ∆t+1,a ,

where ∆t+1,a := KZt(st+1,a)
⊤ (Λt+1 − 1

λK
−1
ZtZt

)
KZt(st+1,a) and Λt+1 := A−1

t+1.

This proves the first of Prop. 4.4.2.

Discussion on practical implementation and time and space complexities The efficient
implementation of the algorithm requires to perform efficient updates of the quantities (defined
in Prop 4.4.2) Λt = (KZt−1St−1KSt−1Zt−1 + λKZt−1Zt−1)

−1 and Γt = KZt−1St−1Yt−1.

(i) When the dictionary is not updated Zt = Zt−1. For the matrix Γt we can perform the
update Γt+1 ← Γt + rtKZt(st) which requires mt kernel evaluations. As for the matrix Λt we
can use the first rank Shermann-Morrison formula on it by adding updates on st in O(m2

t )
operations where Λt+1 = (KZtStKStZt + λKZtZt)

−1. Here we only store K−1
ZtZt

and do not
update it.

(ii) When the dictionary is updated Zt ̸= Zt−1 and we can write Zt = Zt−1 ∪ {zmt},
Regarding Γt, we do two updates, one on the state st by adding rtKZt−1(st) and a second

on the new anchor point zmt so that we have

Γt+1 ← [Γt + rtKZt−1(st),KSt(zmt)
⊤Yt]

⊤ .

The first update is performed in O(mt) kernel evaluations as in the (i) case, and the second
update requires O(t) kernel evaluations and then O(t) computations. Note that the (ii) is
only visited at most m times which is the size of the dictionary at t = T .

Regarding Λt, we note that we can write KZtStKStZt + λKZtZt as[
KZt−1StKStZt−1 + λKZt−1Zt−1 KZt−1StKSt(z) + λKZt−1(z)
KSt(z)

⊤KStZt−1 + λKZt−1(z)
⊤ KSt(z)

⊤KSt(z) + λK(z, z)

]
.

We perform the update in two stages by first computing the inverse (KZt−1StKStZt−1 +
λKZt−1Zt−1)

−1 by using a first-rank Sherman Morrison on the state update st, as if the
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Algorithm 12: Efficient Kernel UCB
Input: T the horizon, λ regularization and exploration parameters, K( the kernel

function, ε > 0, γ > 0
Initialization;
Context x0, a0 chosen randomly and reward r0 ;
S = {(x0, a0)}, YS = [r0] ;
Z = {(x0, a0)} ;
Λt = (KZSKSZ + λKZZ)

−1 Γt = KZSYS ;
for t = 1 to T do

Observe context xt ;
Choose β̃t (e.g as in Lem. 4.4.1, and δ = 1

T 2 ) ;
Choose at ← argmaxa∈A µ̃t,a + β̃tσ̃t,a ;

µ̃t,a ← KZ(st,a)
⊤ΛtΓt ;

∆t,a = KZ(st,a)
⊤ (Λt − 1

λK
−1
ZZ
)
KZ(st,a) ;

σ̃2t,a ← 1
λK(st,a, st,a) + ∆t,a ;

Observe reward rt and st ← (xt, at) ;
YS ← [YS , rt]

⊤,S ← S ∪ {st} ;
Z ′ ← KORS(t,Z,KZ(st), λ, ε, γ) ;
if Z ′ = Z then

Incremental inverse update Λt with st;
Γt+1 ← Γt + rtKZ(st) ;

end
else

z = Z ′ \ Z ;
Incremental inverse update Λt with st, z ;
Incremental inverse update K−1

ZZ with z;
Update Γt+1 ← [Γt + rtKZ(st), KS(z)

⊤YS ]
⊤

end
end

dictionary did not change, and we then perform a Schur complement update using the latter
inverse. Both updates are done in O(m2

t ) operations.

As for the inverse of the projection gram matrix, we use a Schur complement update in
O(m2

t ) operations that we detail here for K−1
Zt+1Zt+1

:

K−1
ZtZt

=

[
K−1

Zt−1Zt−1
+ 1

ωwtw
⊤
t − 1

ωwt

− 1
ωw

⊤
t

1
ω

]

whereω = K(zmt , zmt)−KZt−1(zmt)
⊤K−1

Zt−1Zt−1
kZt−1(zmt) and withwt = K−1

Zt−1Zt−1
KZt−1(zmt).

4.12.3. Kernel Online Row Sampling (KORS) Subroutine

As in Calandriello et al. (2017b), let us define a projection dictionary Zt as a collection of
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indexed anchor points {(zti}1≤i≤mt where mt = |Zt| as well as the rescaling diagonal matrix
SZt with 1/

√
p̃zs corresponding to the past sampling probabilities of points z ∈ Zt, this matrix

is of sizemt×mt. At each time step, KORS temporarily adds twith weight 1 to the temporary
dictionary Z∗

t and accordingly augments the corresponding matrix SZ∗
t
. The augmented

dictionary is then used to compute the ridge leverage score (RLS) estimator:

τ̃t =
1 + ε

µ

(
K(st, st)−KZ∗

t
(st)

⊤SZ∗
t
(S⊤

Z∗
t
KZ∗

t Z∗
t
SZ∗

t
+ µI)−1S⊤

Z∗
t
KZ∗

t
(st)
)
. (4.41)

Afterward, it draws a Bernoulli random variable zt proportionally to τ̃t, if it succeeds, (zt = 1)
the point is deemed relevant and added to the dictionary, otherwise it is discarded and never
added.

Algorithm 13: Incremental Kernel Online Row Sampling (KORS) subroutine
Input: Time t, past dictionary Z , context-action st, regularization µ, accuracy ε,

budget γ
Compute the leverage score τ̃t from Z, st, µ, ε ;
Compute p̃t = min{γτ̃t, 1} ;
Draw zt ∼ B(p̃t) and if zt = 1, add st to Z ;
Result: Dictionary Z

Here, all rows and columns for which St,∗ is zero (all points outside the temporary
dictionary It,∗) do not influence the estimator, so they can be excluded from the computation.
As a consequence, the RLS score τ̃t can be computed efficiently in O((mt + 1)2) space and
O((mt + 1)2) time, using an incremental update in Eq. (4.41).

As a side note, the quantity τ̃ is an estimator of the exact RLS quantity τt (see Calandriello
et al. (2017b)):

τt = φ⊤
t (Kt + µI)−1φt . (4.42)

Here, leverage scores are used to measure the correlation between the new point φt w.r.t.
the previous t − 1 points {φi}i≤t−1, and therefore how essential it is in characterizing the
dataset. In particular, if φt is completely orthogonal to the other points, its RLS is maximized,
while in the opposite case it would be minimal. In the incremental strategy of the Nyström
dictionary building, we use the RLS estimates to add anchor points that are as informative as
possible.

4.13. Experiment details
In this section we provide further details as well as additional discussions and numerical

results on our proposed method.

4.13.1. Reproducibility and Implementations

We provide code that is accessible at the link https://github.com/criteo-research/
Efficient-Kernel-UCB. All experiments were run on a single CPU core (2 x Intel(R) Xeon(R)

https://github.com/criteo-research/Efficient-Kernel-UCB
https://github.com/criteo-research/Efficient-Kernel-UCB
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Gold 6146 CPU@ 3.20GHz).

Baseline implementations We implemented the BKB and BBKB algorithms in (Calandriello
et al., 2019) and (Calandriello et al., 2020) by introducing modifications in their implementation
to handle contextual information. For both methods, in the contextual variant, each update
involves the computation of a new covariance matrix KZSKSZ while the original algorithms
do not involve contexts and consider a finite set of actions, allowing to compute the covariance
matrix on the finite set of actions (which is done for computational efficiency and is impossible
in the joint context-action space). The baselines were carefully optimized using the Jax library
(https://github.com/google/jax) to allow for just in time compilations of similar blocks
in every methods.

Empirical setting In our empirical setting we aimed at showing the regret/computational
complexity compromise that is achieved by each method. In particular, both the CBBKB
method (Calandriello et al., 2020) and our EK-UCB algorithm use additional hyperparameters
than the CBKB. As a matter of fact, CBBKB uses an accumulation threshold C and is
used for the ’resparsification’ step, with dictionary updates based on all historical states.
EK-UCB also uses the hyperparameter µ in KORS that is set to λ for optimal regret-time
compromise (see Theorem 4.4.1). The KORS algorithm uses a budget parameter γ, for which
we found empirically good performances when γ ≈ λ. We tried our method with a grid on
hyperparameters and discuss their influence in the next subsection.

4.13.2. Additional Results

In this section we provide additional numerical experiment discussions.

Additional discussions on the setting of Section 4.5
We present additional results on the synthetic setting presented in Section 4.5 that we call

’Bump’ in Figures 4.3, 4.4, 4.5. Here we fix λ = µ for EK-UCB and report the performances
of the baselines with the same hyperparameters and make the accumulation threshold C of
CBBKB vary through the Figures 4.3, 4.4, 4.5. We provide more discussion on the methods
we evaluated.

Figure 4.3: ’Bump’ setting: Regret and running times of EK-UCB, CBBKB and CBKB, with T = 2000
and λ = µ (see Corollary 4.3.1 and 4.4.1) with varying λ and C = 3 for CBBKB. EK-UCB matches the

best regret-time compromise.

https://github.com/google/jax


4.13. Experiment details 154

Figure 4.4: ’Bump’ setting: Regret and running times of EK-UCB, CBBKB and CBKB, with T = 2000
and λ = µ with varying λ and C = 10 for CBBKB. EK-UCB matches the best regret-time compromise.

Figure 4.5: ’Bump’ setting: Regret and running times of EK-UCB, CBBKB and CBKB, with T = 2000
and λ = µ with varying λ and C = 30 for CBBKB. EK-UCB matches the best regret-time compromise

More dictionary updates lead to better regret but a higher computational complexity
We note that the CBKB baseline achieves satisfactory regret but with a drastically higher
computational time. This is due to the fact that it resamples the dictionary at each step and
therefore resamples a dictionary at the price of a higher time complexity. As for CBBKB,
throughout the Figures 4.3, 4.4, 4.5, we can see that the accumulation thresholdC that controls
the anchor point update frequency determines the regret-time compromise. The lower C,
the better is the regret but the higher is the computational time. We can see through the
figures that for all values of C, our EK-UCB method achieves similar or better (especially
when C = 30) regret than CBBKB while always being both faster than CBBKB but more
importantly faster than K-UCB. Overall, EK-UCB proposes the most satisfactory regret-time
compromise. Moreover, we see that the SupK-UCB method also performs poorly even with
different parameters λ and that the optimized K-UCB method also performs better than
efficient strategies when the computational overheads of dictionary buildings overtake the
efficient kernel approximations.

The regularization parameter controls the regret-time comprise in EK-UCB In our method,
we can see that the higher λ (with λ = µ) the faster the algorithm is but the worse is its regret.
As discussed in Corollary 4.3.1 and 4.4.1, we use the heuristic to take λ ≈

√
T and set µ = λ

afterwards to enjoy the optimal guarantees of our algorithm.
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Additional synthetic settings
In this section we introduce additional settings that we call the ’Chessboard’ setting as

well as the ’Step Diagonal’ setting. The two settings lead to similar numerical conclusions as
the previous one. We provide more discussions here.

Chessboard and Step Diagonal synthetic setups. The ’Chessboard’ synthetic setup is a
contextual environment with a piecewise reward function over the joint context-action space
X ×A = [0, 1]× [0, 1]. More precisely, the joint 2D space is cut into a grid where the values
are either 1, 0.5 or 0 according to the part of the grid. Results are shown in Figures 4.7, 4.8,
4.9. The ’Step diagonal’ synthetic setup is a contextual environment with a diagonal reward
function over the joint context-action space X ×A = [0, 1]× [0, 1]. More precisely, the joint
2D space has values of 0 everywhere except along two bands along the diagonal where the
action and context values are identical with values 0.5 and 1 respectively on the sub diagonal
and the above diagonal. Results are shown in Figures 4.10, 4.11, 4.12. See the code for more
details and an illustration of the settings in Fig 4.6.

Figure 4.6: Chessboard (left) and Step Diagonal (right) synthetic setups.

Figure 4.7: ’Chessboard’ setting: Regret and running times of EK-UCB, CBBKB and CBKB, with
T = 2000 and λ = µ with varying λ and C = 3 for CBBKB.

Regret-time compromise for CBBKB and EK-UCB. The two settings show what both
algorithms CBBKB and EK-UCB achieve as a regret-time compromise. In cases where C
is lower (note that CBKB corresponds to CBBKB with C = 1) the regret often decreases
at the price of higher computational time complexity. Similarly, we can notice that our
method has better regrets when λ is low, but with higher computational times, while still
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Figure 4.8: ’Chessboard’ setting: Regret and running times of EK-UCB, CBBKB and CBKB, with
T = 2000 and λ = µ with varying λ and C = 10 for CBBKB.

Figure 4.9: ’Chessboard’ setting: Regret and running times of EK-UCB, CBBKB and CBKB, with
T = 2000 and λ = µ with varying λ and C = 30 for CBBKB.

providing a benefit over to the K-UCB method, unlike CBBKB. We therefore note again that in
practice, dictionary building computational overheads may influence the global computational
complexity. Overall, our method with its incremental dictionary building strategy achieves
the best satisfactory time-regret compromises in the Chessboard and Step Diagonal settings
compared to both K-UCB and the efficient algorithms CBKB and CBBKB.
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Figure 4.10: ’Step Diagonal’ setting: Regret and running times of EK-UCB, CBBKB and CBKB, with
T = 2000 and λ = µ with varying λ and C = 3 for CBBKB.

Figure 4.11: ’Step Diagonal’ setting: Regret and running times of EK-UCB, CBBKB and CBKB, with
T = 2000 and λ = µ with varying λ and C = 10 for CBBKB.

Figure 4.12: ’Step Diagonal’ setting: Regret and running times of EK-UCB, CBBKB and CBKB, with
T = 2000 and λ = µ with varying λ and C = 30 for CBBKB.



5
Nested Bandits

In various sequential decision-making processes, the learning agent often faces the
challenge of choosing from a high number of alternatives that share many similarities. These
similarities can result in closely correlated losses, which can make the use of traditional
discrete choice models and bandit algorithms less efficient. In the presence of a similarity
structure with a hierarchy of embedded (non-combinatorial) similarities, we tackle the
problem of adversarial multi-armed bandits where the learner seeks to minimize their regret.
In that context, well-known optimal algorithms based on exponential weights (like Hedge,
EXP3, and their variants) may incur unnecessary regret because they tend to spend excessive
time exploring irrelevant alternatives that have similar but suboptimal costs. To address
this problem, we propose in this chapter the nested exponential weights (NEW) algorithm and
the exponential weights with experts and nesting (EWEN) algorithm with expert advice. Both
algorithms employ a layered exploration of the learner’s set of alternatives based on a nested,
step-by-step selection method where we assume that the learner observes the “intra-class”
losses of their chosen alternative. We then establish a series of tight regret bounds for the
learner’s regret, demonstrating that online learning problems characterized by a high degree
of similarity between alternatives can be efficiently resolved with improved dependencies on
the alternative set.

This chapter is based on the following material and the manuscript in preparation:

M. Martin, P. Mertikopoulos, T. Rahier, and H. Zenati. Nested bandits. International
Conference on Machine Learning (ICML), 2022

H. Zenati, T. Rahier, M. Martin, and P. Mertikopoulos. Sequential Decision Processes
with Outcome Similarities

158
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5.1. Introduction
Sequential decision making methods has ubiquitous in many applications such as online

recommendation systems (Li et al., 2010). At each round, an agent chooses an alternative;
then, the environment generates a cost based on it. The goal of the agent is to minimize
the cumulative regret over time, which requires a careful balancing between exploitation
(minimizing costs using past observations) and exploration (increasing the diversity of
observations). Typically, when the alternative set is large and has an inherent structure which
result in outcome similarities, decision models can incur pointless regret.

Consider for example the following case (known as the “red bus / blue bus paradox” in
the context of transportation economics). A commuter has a choice between taking a car or a
bus to work: commuting by car takes on average half an hour modulo random fluctuations,
whereas commuting by bus takes an hour, again modulo random fluctuations (it’s a long
commute). Then, under the classical multinomial logit choice model for action selection
Luce (1959); McFadden (1974), the commuter’s odds for selecting a car over a bus would
be exp(−1/2)/ exp(−1) ≈ 1.6 : 1. This indicates a very clear preference for taking a car to
work and is commensurate with the fact that, on average, commuting by bus takes twice as
long.

Consider now the same model but with a twist. The company operating the bus network
purchases a fleet of new buses that are otherwise completely identical to the existing ones,
except for their color: old buses are red, the new buses are blue. This change has absolutely
no effect on the travel time of the bus; however, since the new set of alternatives presented to
the commuter is {car, red bus, blue bus}, the odds of selecting a car over a bus (red or blue, it
doesn’t matter) now drops to exp(−1/2)/[exp(−1)+ exp(−1)] ≈ 0.8 : 1. Thus, by introducing
an irrelevant feature (the color of the bus), the odds of selecting the alternative with the highest
utility have dropped dramatically, to the extent that commuting by car is no longer the most
probable choice in this example.

Of course, the shift in choice probabilities may not always be that dramatic, but the point
of this example is that the presence of an irrelevant alternative (the blue bus) would always
induce such a shift – which is, of course, absurd. In fact, the red bus / blue bus paradox was
originally proposed as a sharp criticism of the independence from irrelevant alternatives (IIA)
axiom that underlies the multinomial logit choice model (Luce, 1959) and which makes it
unsuitable for choice problems with inherent similarities between different alternatives. In
turn, this has led to a vast corpus of literature in social choice and decision theory, with an
extensive array of different axioms and models proposed to overcome the failures of the IIA
assumption. For an introduction to the topic, we refer the reader to the masterful accounts of
McFadden (1974), Ben-Akiva and Lerman (1985) and Anderson et al. (1992).

Perhaps surprisingly, the implications of the red bus / blue bus paradox have not been
explored in the context of online learning, despite the fact that similarities between alternatives
are prevalent in the field’s application domains – for example, in recommender systems
with categorized product recommendation catalogues, in the economics of transport and
product differentiation, etc. What makes this gap particularly pronounced is the fact that
logit choice underlies some of the most widely used algorithmic schemes for learning in
multi-armed bandit problems – namely the exponential weights algorithm for exploration
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and exploitation (EXP3) (Vovk, 1990; Littlestone and Warmuth, 1994; Auer et al., 1995) as
well as its variants, Hedge (Auer et al., 2002), EXP3.P (Auer et al., 2003), EXP3-IX (Kocák
et al., 2014), EXP4 (Auer et al., 2003) / EXP4-IX (Neu, 2015), etc. Thus, given the vulnerability
of logit choice to irrelevant alternatives, it stands to reason that said algorithms may be
suboptimal when faced with a set of alternatives with many inherent similarities.

Contributions. This chapter examines this question in the context of repeated decision
problems where a learner seeks to minimize their regret in the presence of a large number
of distinct alternatives with a hierarchy of embedded (non-combinatorial) similarities. This
similarity structure, which we formalize in section 5.2, is defined in terms of a nested series of
attributes – like “type” or “color” – and induces commensurate similarities to the losses of
alternatives that lie in the same class (just as the red and blue buses have identical losses in
the example described above).

Inspired by the nested logit choice model introduced by McFadden (1974) to resolve the
original red bus / blue bus paradox, we develop in section 5.4.2 a nested exponential weights
(NEW) algorithm for no-regret learning in decision problems of this type. The result for this
algorithm is that the regret incurred by NEW is bounded as O(√keff log k · T ), where k is the
total number of alternatives.

In the presence of expert advice, we introduce in section 5.5 the exponential weights with
experts and nesting (EWEN) algorithm to learn a strategy on experts. The latter achieves a
regret bounded as O(√keff logM · T ), where M is the total number of experts and keff is the
“effective” number of alternatives when taking similarities into account (for example, in the
standard red bus / blue bus paradox, keff = 2, cf. section 5.2.2).

For both algorithms, the gap between nested and non-nested algorithms can be quantified
by the problem’s price of affinity (PoAf), defined here as the ratio α =

√
k/keff . This ratio

measures the worst-case ratio between the regret guarantees of the NEW and the EXP3
algorithms (scaling as O(√k log k · T ) in the problem at hand) as well as between the EWEN
and exponential weights algorithm for exploration and exploitation with experts (EXP4) (the
latter scaling as O(√k logM · T )).

In practical applications (such as the type of recommendation problems that arise in
online advertising), α can be exponential in the number of attributes, indicating that our
proposed algorithms could lead to significant performance gains in this context. We verify
that this is indeed the case in a range of synthetic experiments in section 5.7.

Related Work. The problem of exploiting the structure of the loss model and/or any side
information available to the learner is a staple of the bandit literature. More precisely, in
the setting of contextual bandits, the learner is assumed to observe some “context-based”
information and tries to learn the “context to reward” mapping underlying the model in order
to make better predictions. Bandit algorithms of this type – like EXP4 – are often studied
as “expert” models (Auer et al., 2003; Cesa-Bianchi and Lugosi, 2006) or attempt to model
the agent’s loss function with a semi-parametric contextual dependency in the stochastic
setting to derive optimistic action selection rules (Abbasi-yadkori et al., 2011); for a survey, we
refer the reader to Lattimore and Szepesvári (2020) and references therein. While the nested
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bandit model we study assumes an additional layer of information relative to standard bandit
models, there are no experts or a contextual mapping conditioning the action taken, so it is
not comparable to the contextual setup.

The type of feedback we consider assumes that the learner observes the “intra-class” losses
of their chosen alternative, similar to the semi-bandit in the study of combinatorial bandit
algorithms Cesa-Bianchi and Lugosi (2012); György et al. (2007). However, the similarity with
combinatorial bandit models ends there: even though the categorization of alternatives gives
rise to a tree structure with losses obtained at its leaves, there is no combinatorial structure
defining these costs, and modeling this as a combinatorial bandit would lead to the same
number of arms and ground elements, thus invalidating the concept.

Besides these major threads in the literature, (Thune and Seldin, 2018) recently showed
that the range of losses can be exploited with an additional free observation, while (Cesa-
Bianchi and Shamir, 2018) improves the regret guarantees by using effective loss estimates.
However, both works are susceptible to the advent of irrelevant alternatives and can incur
significant regret when faced with such a problem. Finally, in the Lipschitz bandit setting,
(Cesa-Bianchi et al., 2017; Héliou et al., 2021) obtain order-optimal regret bounds by building
a hierarchical covering model in the spirit of Bubeck et al. (2011); the correlations induced by
a Lipschitz loss model cannot be compared to our model, so there is no overlap of techniques
or results.

5.2. Similarity structures: the general model
We begin in this section by defining our general nested choice model. Because the

technical details involved can become cumbersome at times, it will help to keep in mind the
running example of a music catalogue where songs are classified by, say, genre (classical
music, jazz, rock,. . . ), artist (Rachmaninov, Miles Davis, Led Zeppelin,. . . ), and album. This
is a simple – but not simplistic – use case which requires the full capacity of our model, so we
will use it as our “go-to” example throughout.

5.2.1. Attributes, classes, and the relations between them

Let A = {ai : i = 1, . . . , k} be a set of alternatives (or atoms) indexed by i = 1, . . . , k. A
similarity structure (or structure of attributes) on A is defined as a tower of nested similarity
partitions (or attributes)Sℓ, ℓ = 0, . . . , L, ofAwith {A} =: S0 ≽ S1 ≽ · · · ≽ SL := {{a} : a ∈ A}.
As a result of this definition, each partition Sℓ captures successively finer attributes of the
elements of A (in our music catalogue example, these attributes would correspond to genre,
artist, album, etc.).1 Accordingly, each constituent set A of a partition Sℓ will be referred to as
a similarity class and we assume it collects all elements of A that share the attribute defining
Sℓ: for example, a similarity class for the attribute “artist” might consist of all Beethoven
symphonies, all songs by Led Zeppelin, etc.

1The trivial partitions S0 = {A} and SL = {{a} : a ∈ A} do not carry much information in themselves, but
they are included for completeness and notational convenience later on.
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S0 = A
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Figure 5.1: A structure with L = 3 attributes on the set A = {a1, . . . , a8}; for example, the class S1
2

consists of {a3, a4}.

Collectively, a structure of attributes will be represented by the disjoint union

S :=
∐L

ℓ=0
Sℓ ≡

⋃L

ℓ=0
{(A, ℓ) : A ∈ Sℓ} (5.1)

of all class/attribute pairs of the form (A, ℓ) for A ∈ Sℓ. In a slight abuse of terminology
(and when there is no danger of confusion), the pair S = (A, ℓ) will also be referred to as
a “class”, and we will write S ∈ Sℓ and a ∈ S instead of A ∈ Sℓ and a ∈ A respectively. By
contrast, when we need to clearly distinguish between a class and its underlying set, we will
write A = elemS for the set of atoms contained in S and ℓ = attrS for the attached attribute
label.

Remark 5.2.1. The reason for including the attribute label ℓ in the definition of S is that a set of
alternatives may appear in different partitions of A in a different context. For example, if “IV” is
the only album by Led Zeppelin in the catalogue, the album’s track list represents both the set of “all
songs in IV” as well as the set of “all Led Zeppelin songs”. However, the focal attribute in each case
is different – “artist” in the former versus “album” in the latter – and this additional information
would be lost in the non-discriminating union

⋃L
ℓ=0 Sℓ (unless, of course, the partitions Sℓ happen to

be mutually disjoint, in which case the distinction between “union” and “disjoint union” becomes
set-theoretically superfluous). ¶

Moving forward, if a class S ∈ Sℓ contains the class S′ ∈ Sk for some k > ℓ, we will
say that S′ is a descendant of S (resp. S is an ancestor of S′), and we will write “S′ ≺ S”
(resp. “S ≻ S′”).2 As a special case of this relation, if S′ ≺ S and k = ℓ+ 1, we will say that
S′ is a child of S (resp. S is parent of S′) and we will write “S′ ◁ S” (resp. “S ▷ S′”). For
completeness, we will also say that S′ and S′′ are siblings if they are children of the same
parent, and we will write S′ ∼ S′′ in this case. Finally, when we wish to focus on descendants
sharing a certain attribute, we will write “S′ ≺ℓ S” as shorthand for the predicate “S′ ≺ S
and attrS′ = ℓ”.

Building on this, a similarity structure on A can also be represented graphically as a
rooted directed tree – an arborescence – by connecting two classes S, S′ ∈ S with a directed

2More formally, we will write S′ ≺ S when elemS′ ⊆ elemS and attrS′ > attrS. The corresponding weak
relation “≼” is defined in the standard way, i.e., allowing for the case attrS′ = attrS which in turn implies that
S′ = S.
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edge S → S′ whenever S ▷ S′. By construction, the root of this tree is A itself,3 and the
unique directed path A ≡ S0 ▷ S1 ▷ · · · ▷ Sℓ ≡ S from A to any class S ∈ S will be referred
to as the lineage of S. For notational simplicity, we will not distinguish between S and its
graphical representation, and we will use the two interchangeably; for an illustration, see
figure 5.1.

5.2.2. Loss model

Throughout what follows, we will consider loss models in which alternatives that share
a common set of attributes incur similar costs, with the degree of similarity depending on
the number of shared attributes. More precisely, given a similarity class S ∈ S, we will
assume that all its immediate subclasses S′ share the same base cost cS (determined by the
parent class S) plus an idiosyncratic cost increment rS′ (which is specific to the child S′ ◁ S
in question). Formally, starting with cA = 0 (for the root class A), this boils down to the
recursive definition

cS′ = cS + rS′ for all S′ ◁ S, (5.2)

which, when unrolled over the lineage A ≡ S0 ▷ S1 ▷ · · · ▷ Sℓ ≡ S of a target class S ∈ Sℓ,
yields the expression

cS =
∑

S′≽S
rS′ = rS1 + · · ·+ rSℓ

. (5.3)

Thus, in particular, when S ← a ∈ A, the cost assigned to an individual alternative a ∈ A
will be given by

ca =
∑L

ℓ=1
rSℓ

=
∑

S∋a
rS for all a ∈ A. (5.4)

Finally, to quantify the “intra-class” variability of costs, we will assume throughout that
the idiosyncratic cost increments within a given parent class S are bounded as

rS′ ∈ [0,ΓS ] for all S′ ◁ S. (5.5)

This terminology is justified by the fact that, under the loss model (5.2), the costs cS′ , cS′′ to
any two sibling classes S′, S′′ ◁ S (i.e., any two classes parented by S) differ by at most ΓS .
Analogously, the costs to any two alternatives a, a′ ∈ A that share a set of common attributes
S1, . . . , Sℓ will differ by at most

∑L
k=ℓ+1 ΓSk

.

Example 5.2.1. To represent the original red bus / blue bus problem as an instance of the above frame-
work, let S1 = {{red bus, blue bus}, {car}} be the partition of the set A = {red bus, blue bus, car} by
type (“bus” or “car”), and let S2 be the corresponding sub-partition by color (“red” or “blue” for
elements of the class “bus”). The fact that color does not affect travel times may then be represented
succinctly by taking Γcolor = 0. ¶

Remark 5.2.2. We make no distinction here between ca and c{a}, i.e., between an alternative a of A
and the (unique) singleton class of {a} ∈ SL containing it. This is done purely for reasons of notational
convenience. ¶

3Stricto sensu, the root of the tree is (A, 0), but since there is no danger of confusion, the attribute label “0”
will be dropped.
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Remark 5.2.3. For posterity, we also note that the optimizing agent is assumed to be aware of the
cost decomposition (5.4) after selecting an alternative a ∈ A. In the context of combinatorial bandits
Cesa-Bianchi and Lugosi (2012) this would correspond to the so-called “semi-bandit” setting. ¶

To align our presentation with standard bandit models with losses in [0, 1], we will
assume throughout that for an alternative a ∈ A, we have

∑
S∋a ΓS ≤ 1 for all a ∈ A, meaning

in particular that the maximal cost incurred by any alternative a ∈ A is upper bounded by 1.
Other than this normalization, the sequence of idiosyncratic loss vectors rt ∈ RS , t = 1, 2, . . . ,
is assumed arbitrary and unknown to the learner as per the standard adversarial setting
Cesa-Bianchi and Lugosi (2006); Shalev-Shwartz (2012).

5.2.3. Contrasting with other similarity structure models

In this section, we further discuss our similarity structure model with regards to bandit
methods that aim to model similarities.

Combinatorial bandits Consider a class of learning models with an underlying combinato-
rial structure in the spirit of Cesa-Bianchi and Lugosi (2009, 2012). In this class of problems, a
participating agent selects a specific combination A ⊆ A from a set A = {a1, . . . , ak} of k pos-
sible resources (a set of congestible facilities, the edges of a path in a network routing problem,
etc.). Then, every agent receives as a reward the aggregate payoff of the utilized resources
(which, depending on the context, may be a function of the number of agents employing it
or other, exogenous factors). Instead, our method involves a hierarchical decision-making
process where the available actions are structured in a nested but not necessarily combinatorial
manner. Indeed, the choice of a ℓ-level class Sℓ ∈ Sℓ determines a specific set of child classes
Sℓ+1 ◁ Sℓ from which the agent must choose next. This set of child classes is in general
exclusive to that parent class, as is the case in the genre/artist/album example. For instance,
“Dark Side of the Moon” is only available in the graph through the parent class “Pink Floyd”,
preventing this example to be modeled in a combinatorial manner.

Graph bandits Graph bandits (Valko, 2016) are class of bandit problems where the actions
in A are the vertices of a graph G = (A, E) which edges symbolize similarities between their
corresponding losses. At each round t the player observes losses in the neighbourhood of
each arm (Mannor and Shamir, 2011; Alon et al., 2013; Kocák et al., 2014), and thus exploits
the structure of the graph by estimating the expected loss of each node. Instead of the regret

boundO(√k log k · T ), such methods achieve a regret ofO(
√
k̃eff log k · T )where k̃eff(G) ∈ [k]

is the independence number ofGwhich is smaller asG becomes denser. Our work first differs
from the graph bandit setup because only the leaves from the graph obtained in the similarity
structure (such as the one displayed in figure 5.1) are the actions that can be selected. Aside
from this difference, our setting also uses incremental losses of parent classes up to the leaves.
We note however some analogies in the similarity of the losses that can be seen in the distance
between action nodes through common ancestors.
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5.3. The Nested Importance Weighted Estimator
Before we move forward to the sequential decision processes in Section 5.4, 5.5, we will

define a cost estimation procedure for the decisions that are not made by the agents. In both
cases, an alternative â is either selected by the learner or via the experts. Such a selection is
done step by step in the similarity structureA ≡ Ŝ0 ▷ Ŝ1 ▷ · · · ▷ ŜL = {â} that we presented
in the previous section. A key component for both methods is then to estimate effectively
the costs of alternatives that were not chosen. Actually, when given a cost vector c ∈ [0, 1]A

and a mixed strategy u ∈ ∆(A) with full support, a standard way to estimate the unselected
alternatives a ∈ A is via the importance-weighted estimator (Bubeck and Cesa-Bianchi, 2012;
Lattimore and Szepesvári, 2020)

ĉa =
1{a = â}

ua
ca (IWE)

where â ∼ u is the (random) element of A chosen under u and thus defines ĉ =
(ĉa)a∈A.

This estimator enjoys the following important properties:

1. It is non-negative.

2. It is unbiased, i.e.,
E[ĉa] = ca for all a ∈ A. (5.6)

3. Its importance-weighted mean square is bounded as

E
[∑

a∈A
uaĉ

2
a

]
≤ k (5.7)

This trifecta of properties plays a key role in establishing the no-regret guarantees of the
vanilla exponential weights algorithm Auer et al. (2002); Littlestone and Warmuth (1994);
Vovk (1990) and which can then be adapted to the expert variants Auer et al. (2003); McMahan
and Streeter (2009); Lattimore and Szepesvári (2020); at the same time however, (IWE) fails to
take into account any side information provided by similarities between different elements
of A. This is perhaps most easily seen in the original red bus / blue bus paradox: if the
commuter takes a red bus, the observed utility would be immediately translatable to the
blue bus (and vice versa). However, (IWE) is treating the red and blue buses as unrelated,
so the alternative cost ĉblue bus is not updated under (IWE), even though cblue bus = cred bus by
default.

To exploit this type of similarities, we introduce below a layered estimator. To define
it, let u ∈ ∆(A) be a mixed strategy on A with full support, and assume that an element
â ∈ A is selected progressively according to u; the conditional probabilities uS′|S may of
course differ. First, a similarity class Ŝ1 ∈ S1 is chosen with probability P(Ŝ1 = S1) = uS1 ;
subsequently, conditioned on the choice of Ŝ1, a class Ŝ2 ◁ Ŝ1 is selected with probability
P(Ŝ2 = S2|Ŝ1) = uS2|Ŝ1

, and the process repeats until reaching a leaf ŜL = {â} of S (at
which point the selection procedure terminates and returns â). Then, given a loss profile
r ∈ [0,+∞)S and a mixed strategy u ∈ ∆(A), the nested importance weighted estimator (NIWE)
is defined for all ℓ = 1, . . . , L as
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r̂Sℓ
=
1
{
Sℓ = Ŝℓ, . . . , S1 = Ŝ1

}
uSℓ|Sℓ−1

· · ·uS2|S1
uS1

rSℓ
(NIWE)

where the chain of categorical random variables A ≡ Ŝ0 ▷ Ŝ1 ▷ · · · ▷ ŜL = {â} is drawn
according to u ∈ ∆(A) as outlined above.4

This estimator will play a central part in our analysis, so some remarks are in order. First
and foremost, the non-nested estimator (IWE) is recovered as a special case of (NIWE) when
there are no similarity attributes on A (i.e., L = 1). Second, in a bona fide nested model, we
should note that ĉSℓ

is Ŝℓ-measurable but not Ŝℓ−1-measurable: this property has no analogue
in (IWE), and it is an intrinsic feature of the step-by-step selection process underlying (NIWE).
Third, it is also important to note that (NIWE) concerns the idiosyncratic losses of each chosen
class, not the base costs ca of each alternative a ∈ A. This distinction is again redundant
in the non-nested case, but it leads to a distinct estimator for ca in nested environments,
namely

ĉa =
∑

S∋a
r̂S for all a ∈ A. (5.8)

In particular, in the red bus / blue bus paradox, this means that an observation for the class
“bus” automatically updates both ĉred bus and ĉblue bus, thus overcoming one of the main
drawbacks of (IWE) when facing irrelevant alternatives.

To complete the comparison with the non-nested setting, we summarize below the most
important property of the layered estimator (NIWE):

Proposition 5.3.1. Let S =
∐L

ℓ=1 Sℓ be a similarity structure on A. Then, given a mixed strategy
u ∈ ∆(A) and a vector of cost increments r ∈ RS as per (5.5), the estimator (NIWE) satisfies the
following:

1. It is unbiased:
E[r̂S ] = rS for all S ∈ S. (5.9)

2. It enjoys the importance-weighted mean-square bound

E
[
uS r̂

2
S

]
≤ Γ2

S for all S ∈ S. (5.10)

Accordingly, the loss estimator (5.8) is itself unbiased and enjoys the bound

E
[∑

a∈A
uaĉ

2
a

]
≤ keff (5.11)

where keff is an "effective number of arms" that we define below. We note that proposi-
tion 5.3.1 yields the standard properties of (IWE) as a special case when L = 1 (in which case
there are no similarities to exploit between alternatives). To streamline our presentation, we
prove this result in section 5.9.

4The indicator in (NIWE) is assumed to take precedence over uSk|Sk−1
, i.e., ĉSℓ = 0 if Sk ̸= Ŝk for some

k = 1, . . . , ℓ.
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Definition 5.3.1 (Effective number of arms). Let us denote the “root-mean-square” range of all
classes in Sℓ as

Γ̄ℓ =

√
1

kℓ

∑
Sℓ∈Sℓ

Γ2
Sℓ
, (5.12)

with kℓ = |Sℓ| denoting the number of classes of attribute Sℓ. Then, the effective number of arms
keff is defined as

keff =

(∑L

ℓ=1

√
kℓΓ̄ℓ

)2

. (5.13)

Note that the notion of outcome similarity that we defined in the previous Section 5.2
is instrumental to understand this definition. Indeed, suppose for example that we have a
red bus / blue bus type of problem with, say, k1 = 2 similarity classes, k2 = 100 alternatives
per class, and a negligible intra-class loss differential (Γ2 ≈ 0). Intuitively, it is tempting to
say that only keff = 2 choices are determinant for this problem given the irrelevance of the
colors.

5.4. Nested Exponential Weights
In this section we now present the nested exponential weights (NEW) algorithm. We will

consider the generic online decision process that unfolds over a set of alternativesA endowed
with a similarity structure S =

∐
ℓ Sℓ as follows:

1. At each stage t = 1, 2, . . . , the learner chooses an alternative at ∈ A and its choice is
made by selecting attributes from S one-by-one.

2. Concurrently, nature sets the idiosyncratic, intra-class losses rS,t for each similarity class
S ∈ S.

3. The learner incurs rS,t for each chosen class S ∋ at for a total cost of ct =
∑

S∋at rS,t,
and the process repeats.

In order to prevent the vulnerability of deterministic strategies that could be exploited
by an adversary, the learner chooses an alternative at at time t based on a mixed strategy
ut ∈ ∆(A), i.e., at ∼ ut. The regret of a policy ut, t = 1, 2, . . . , against a benchmark strategy
p ∈ ∆(A) is then defined again as the cumulative difference between the player’s mean cost
under p and ut, that is

RT (p) =
T∑
t=1

[Eut [cat,t]− Ep[cat,t]] =
T∑
t=1

⟨ct, ut − p⟩, (5.14)

where ct = (ca,t)a∈A ∈ RA denotes the vector of costs encountered by the learner at time
t, i.e., ca,t =

∑
S∋a rS,t for all a ∈ A. This definition will now be our figure of merit in this

section.
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5.4.1. The Nested Logit Choice rule

We begin by introducing the attribute selection scheme that forms the backbone of
our proposed policy. Our guiding principle in this is the nested logit choice (NLC) rule of
McFadden (1974) which selects an alternative a ∈ A by traversing S one attribute at a time
and prescribing the corresponding conditional choice probabilities at each level of S.

To set the stage for all this, if u = (u1, . . . , uk) ∈ ∆(A) is a mixed strategy on A we will
write

uS =
∑

a∈S ua (5.15)
for the probability of choosing S ∈ S under u, and

uS′|S = uS′/uS (5.16)

for the conditional probability of choosing a descendant S′ of S assuming that S has
already been selected under u.5 Then the NLC rule proceeds as follows: first, it prescribes
choice probabilities uS1 for all classes S1 ∈ S1 (i.e., the coarsest ones); subsequently, once a
class S1 ∈ S1 has been selected, NLC prescribes the conditional choice probabilities uS2|S1

for all children S2 of S1 and draws a class from S2 based on uS2|S1
. The process then

continues downwards along S until reaching the finest partition SL and selecting an atom
{a} ≡ SL ◁ SL−1 ◁ · · · ◁ S0 ≡ A.

This step-by-step selection process captures the “nested” part of the nested logit choice
rule; the “logit” part refers to the way that the conditional probabilities (5.16) are actually
prescribed given the agent’s predisposition towards each alternative a ∈ A. To make this
precise, suppose that the learner associates to each element a ∈ A a propensity score ya ∈ R
indicating their tendency – or propensity – to select it. The associated propensity score of a
similarity class Sℓ−1 ∈ Sℓ−1, ℓ = 1, . . . , L, is then defined inductively as

ySℓ−1
= µℓ log

∑
Sℓ◁Sℓ−1

exp(ySℓ
/µℓ) (5.17)

where µℓ > 0 is a tunable parameter that reflects the learner’s uncertainty level regarding the
ℓ-th attribute Sℓ of S . In words, this means that the score of a class is the weighted softmax of
the scores of its children; thus, starting with the individual alternatives of A – that is, the
leaves of S – propensity scores are propagated backwards along S, and this is repeated one
attribute at a time until reaching the root of S.

Remark 5.4.1. We should also note that Eq. (5.17) assigns a propensity score to any similarity class
S ∈ S. However, because the primitives of this assignment are the original scores assigned to each
alternative a ∈ A, we will reserve the notation y = (y1, . . . , yk) ∈ RA for the profile of propensity
scores (ya)a∈A that comprises the basis of the recursive definition (5.17). ¶

With all this in hand, given a propensity score profile y = (y1, . . . , yk) ∈ RA, the nested
logit choice (NLC) rule is defined via the family of conditional selection probabilities

PSℓ|Sℓ−1
(y) =

exp(ySℓ
/µℓ)

exp(ySℓ−1
/µℓ)

(NLC)

where:
5Note here that the joint probability of selecting both S and S′ under u is simply uS′ whenever S′ ≼ S.
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1. Sℓ ∈ Sℓ and Sℓ−1 ∈ Sℓ−1 is a child / parent pair of similarity classes of S.

2. µ1 ≥ · · · ≥ µL > 0 is a nonincreasing sequence of uncertainty parameters (indicating a
higher uncertainty level for coarser attributes; we discuss this later).

In more detail, the choice of an alternative a ∈ A under (NLC) proceeds as follows: given
a propensity score ya ∈ R for each a ∈ A, every similarity class SL−1 ∈ SL−1 is assigned
a propensity score via the recursive softmax expression (5.17), and the same procedure is
applied inductively up to the rootA of S . Then, to select an alternative a ∈ A, the conditional
logit choice rule (NLC) proceeds in a top-down manner, first by selecting a similarity class
S1 ◁ S0 ≡ A, then by selecting a child S2 ◁ S1 of S1, and so on until reaching a leaf
{a} ≡ SL ◁ SL−1 ◁ · · · ◁ S0 ≡ A of S.

Remark 5.4.2. The previously defined (NIWE) shadows the step-by-step selection process of (NLC).

Equivalently, unrolling (NLC) over the lineage A ≡ S0 ▷ S1 ▷ · · · ▷ Sℓ ≡ S of a target
class S ∈ Sℓ, we obtain the expression

PS(y) =
∏ℓ

k=1

exp(ySk
/µk)

exp(ySk−1
/µk)

(5.18)

for the total probability of selecting class S under the propensity score profile y ∈ RA. Clearly,
(NLC) and (5.18) are mathematically equivalent, so we will refer to either one as the definition
of the nested logit choice rule.

5.4.2. The nested exponential weights algorithm

We are finally in a position to present the nested exponential weights (NEW) algorithm in
detail. The main ingredients of our method are a cost estimation rule that we described in
section 5.3 and the nested attribute selection that we just detailed. Building on the original
exponential weights blueprint Littlestone and Warmuth (1994); Auer et al. (2002); Vovk (1990),
the main steps of the NEW algorithm can be summed up as follows:

1. For each stage t = 1, 2, . . . , the learner maintains and updates a propensity score profile
yt ∈ RA.

2. The learner selects an action at ∈ A based on the nested logit choice rule at ∼ P(ηtyt)
where ηt ≥ 0 is the method’s learning rate and P is given by (NLC).

3. The learner incurs rS,t for each class S ∋ at and constructs a model ĉt of the cost vector
ct of stage t via (NIWE).

4. The learner updates their propensity score profile based on ĉt and the process repeats.

For a presentation of the algorithm in pseudocode form, see Algorithm 14; the tuning of the
method’s uncertainty parameters µ1 ≥ . . . ≥ µL > 0 and the learning rate ηt is discussed in
the nexts section, where we undertake the analysis of the NEW algorithm.

5.4.3. Regret guarantees

We are now in a position to state and discuss our main regret guarantees for the NEW
algorithm. These are as follows:
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Algorithm 14: Nested exponential weights (NEW)
Require: set of alternatives A, attribute partitions S1 ≽ · · · ≽ SL, attribute structure

S =
∐L

ℓ=1 Sℓ
Input: sequence of class costs rt ∈ [0, 1]S , t = 1, 2, . . . , uncertainty levels µ1, . . . , µL > 0,

learning rate ηt ≥ 0

initialize y ← 0 ∈ RA, S0 = A;
for t = 1, 2, . . . do

for ℓ = L− 1, . . . , 0 and for all S ∈ Sℓ do
set yS ← µℓ+1 log

∑
S′◁S exp(yS′/µℓ+1) ; //as per (5.17)

set r̂S ← 0 ; //baseline guess

for ℓ = 1, . . . , L do
select class Sℓ ◁ Sℓ−1 ; //class choice, (NLC)

Sℓ ∼ uSℓ|Sℓ−1
=

exp(ηtySℓ
/µℓ)

exp(ηtySℓ−1
/µℓ)

get rSℓ,t ; //intra-class cost

set r̂Sℓ
← r̂Sℓ

+
rSℓ,t

uSℓ|Sℓ−1
· · ·uS1|S0

; //(NIWE)
set ĉa ←

∑
S∋a r̂S for all a ∈ A ; //costs

set y ← y − ĉ ; //update propensities

Theorem 5.4.1. Suppose that Algorithm 14 is run with a non-increasing learning rate ηt > 0
and uncertainty parameters µ1 ≥ · · · ≥ µL > 0 against a sequence of cost vectors ct ∈ [0, 1]A,
t = 1, 2, . . . , as per (5.4). Then, for all p ∈ ∆(A), the learner enjoys the regret bound

E[RT (p)] ≤
H

ηT+1
+
keff
2µL

T∑
t=1

ηt (5.19)

with keff given by (5.13) and H ≡ H(µ1, . . . , µL) defined by setting y = 0 in (5.17) and taking
H = yA, i.e.,

H = log

 ∑
S1◁S0

 ∑
S2◁S1

· · ·

 ∑
SL◁SL−1

1


µL

µL−1

· · ·


µ2
µ1


µ1

(5.20)

In particular, if Algorithm 14 is run with µ1 = · · · = µL =
√
keff/2 and ηt =

√
log k/(2t), we have

E[RT (p)] ≤ 2
√
keff log k · T . (5.21)

Proof outline of theorem 5.4.1. The detailed proof of theorem 5.4.1 is quite lengthy, so we
defer it to section 5.9 and only sketch here the main ideas.

The first basic step is to derive a suitable “potential function” that can be used to track
the evolution of the NEW policy relative to the benchmark p ∈ ∆(A). The main ingredient of
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this potential is the “nested” entropy function

h(u) =
∑L

k=0
δk
∑

Sk∈Sk

uSk
log uSk

, (5.22)

where δk = µk − µk+1 for all k = 1, . . . , L (with µL+1 = 0 by convention).6 As we show in
proposition 5.13.1 in section 5.9, the “tiers” of h can be unrolled to give the “non-tiered”
recursive representation

h(u) =
∑

S∈S
h(u|S) (5.23)

where h(u|S) = µℓ+1
∑

S′◁S uS′ log(uS′/uS) denotes the “conditional” entropy of u relative
to class S ∈ Sℓ. Then, by means of this decomposition and a delicate backwards induction
argument, we show in proposition 5.13.2 that

1. the recursively defined propensity score yA of A can be expressed non-recursively as
yA = argmaxu∈∆(A){⟨y, u⟩ − h(u)}; and

2. that the choice rule (NLC) can be expressed itself as

Pa(y) =
∂yA
∂ya

for all y ∈ RA, a ∈ A. (5.24)

This representation of (NLC) provides the first building block of our proof because, by
Danskin’s theorem (Berge, 1997), it allows us to rewrite Algorithm 14 in more concise form
as

yt+1 = yt − ĉt
ut+1 = argmax

u∈∆(A)
{⟨ηt+1yt+1, u⟩ − h(u)} (NEW)

with ĉt given by (5.8) applied to u← ut. Importantly, this shows that the NEW algorithm is
an instance of the well-known “follow the regularized leader” (FTRL) algorithmic framework
(Shalev-Shwartz, 2007, 2012). Albeit interesting, this observation is not particularly helpful in
itself because there is no universal, “regularizer-agnostic” analysis giving optimal (or near-
optimal) regret rates for FTRL with bandit/partial information.7 Nonetheless, by adapting a
series of techniques that are used in the analysis of FTRL algorithms, we show in section 5.9
that the iterates of (NEW) satisfy the “energy inequality”

⟨ĉt, ut − p⟩ ≤Wt −Wt+1 +
1

ηt
F (ut, ηtyt+1)

+ (η−1
t+1 − η−1

t )[h(p)−minh] (5.25)

where ĉt is the nested importance weighted estimator (5.8) for the cost vector encountered ct,
and we have set

F (u, y) = h(u) + yA − ⟨y, u⟩ (5.26)
and Wt = η−1

t F (p, ηtyt).

Then, by proposition 5.3.1, we obtain:

6In the non-nested case, (5.22) boils down to the standard (negative) entropy h(u) =
∑

a ua log ua. However,
the inverse problem of deriving the “correct” form of h in a nested environment involves a technical leap of faith
and a fair degree of trial-and-error.

7For the analysis of specific versions of FTRL with non-entropic regularizers, cf. (Audibert et al., 2011; Zimmert
and Seldin, 2019) and references therein.
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Proposition 5.4.1. The NEW algorithm enjoys the bound

E[RT (p)] ≤
H

ηT+1
+

T∑
t=1

E[F (ut, ηtyt+1)]

ηt
. (5.27)

proposition 5.4.1 provides the first half of the bound (5.19), with the precise form of H
derived in lemma 5.15.1. The second half of (5.19) revolves around the term E[F (ut, ηtyt+1)]
and boils down to estimating how propensity scores are back-propagated along S. In
particular, the main difficulty is to bound the difference y+A − yA in the propensity score of
the root node A of S when the underlying score profile y ∈ RA is incremented to y+ = y + w
for some w ∈ RA.

A first bound that can be obtained by convex analysis arguments is |y+A−yA| ≤ ⟨y, P(y)⟩+
∥w∥2∞; however, because the increments of (NEW) are unbounded in norm, this global bound
is far too lax for our puposes. A similar issue arises in the analysis of EXP3, and is circumvented
by deriving a bound for the log-sum-exp function using the identity exp(x) ≤ 1 + x+ x2/2
for x ≤ 0 and the fact that the estimator (IWE) is non-negative (Lattimore and Szepesvári,
2020; Shalev-Shwartz, 2012; Cesa-Bianchi and Lugosi, 2006). Extending this idea to nested
environments is a very delicate affair, because each tier in S introduces an additional layer of
error propagation in the increments yt+1 − yt. However, by a series of inductive arguments
that traverse S both forward and backward, we are able to show the bound

y+A − yA ≤ ⟨y, P(y)⟩+
1

2µL

L∑
ℓ=1

∑
Sℓ∈Sℓ

PSℓ
(y)r2Sℓ

(5.28)

which, after taking expecations and using the bounds of proposition 5.3.1, finally yields the
pseudo-regret bound (5.19).

5.5. Exponential Weights with Experts and Nesting
In this section we introduce the exponential weights with experts and nesting (EWEN)

algorithm to learn with expert advice.

5.5.1. Expert model

Let E = {em : m = 1, . . . ,M} be a set of experts indexed by m = 1, . . . ,M . The experts
make recommendations to the learner at the beginning of each round t by providing prob-
ability recommendations on which alternatives a ∈ A that induce less losses. Specifically,
the recommendation of the M = |E| experts are given by a matrix of recommendation
Et ∈ [0, 1]M,k where the m-th row is a mixed strategy Em

t ∈ ∆(A). The probability of
sampling the alternative a ∈ A is then written Em

t,a so that Em
t is the vector Em

t =
(
Em

t,a

)
a∈A.

With all this hand, we consider now the following sequential decision process where the
learner selects at each step experts to choose an alternative at ∈ A:

1. At each stage t = 1, 2, . . . , the nature sets the recommendations Et and the learner
chooses experts that select an alternative at by selecting attributes from S one-by-one.
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2. Concurrently, nature sets the idiosyncratic, intra-class losses rS,t for each similarity class
S ∈ S.

3. The experts incur rS,t for each chosen class S ∋ at for a total cost of ct =
∑

S∋at rS,t, the
learner suffers the loss lt = Etctand the process repeats.

Contrary to the previous setting, the learner now employs a strategy to learn a policy on
the expert set. Once again, to avoid deterministic strategies that could be exploited by an
adversary, we will assume that the learner selects experts at time t based on a mixed strategy
wt ∈ ∆(E), i.e., et ∼ wt. The regret of a policy wt, t = 1, 2, . . . , against a benchmark strategy
q ∈ ∆(E) is then defined as the cumulative difference between the player’s mean cost under q
and wt, that is

RT (q) =

T∑
t=1

[Ewt [let,t]− Eq[let,t]] =

T∑
t=1

⟨lt, wt − q⟩ (5.29)

where lt = (le,t)e∈E ∈ RE denotes the vector of costs encountered by the learner at time t,
i.e., le,t = Etct where ct is the cost associated to the alternatives with ca,t =

∑
S∋a rS,t for all

a ∈ A.

In our setting we assume that the similarity structure S =
∐L

ℓ=1 Sℓ is known by the
learner and that the experts provide recommendations on alternatives a ∈ A. In so, it is
possible to derive recommendations on similarity classes at levels ℓ = 1 . . . L. More precisely,
given a recommendation matrix E and an expert em, the mixed strategy Em ∈ ∆(A) can be
used to derive recommendations on any classes S ∈ S by considering all of its descendants in
A:

Em
S =

∑
a≺S

Em
a . (5.30)

Then, it is natural to define a conditional probability Em
S′|S on a class S given a parent

class S′, related to the expert em and where S′ ◁ S, by writing:

Em
S′|S =

Em
S′

Em
S

. (5.31)

This will allow us to define a nested sampling scheme for the EWEN algorithm in the
next subsections. Moreover, we note that for a given element a ∈ A and its associated lineage
A ≡ S0 ▷ S1 ▷ · · · ▷ SL = {a}, the probability Em

a of an expert em to sample the alternative
a can be easily recovered with the relation:

Em
a =

L∏
ℓ=1

Em
Sℓ|Sℓ−1

. (5.32)
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5.5.2. The exponential weights with experts and nesting algorithm

Before introducing our algorithm, we require a cost estimation rule on the experts.
Fortunately, to estimate the costs of experts, it is easy to note that the previous cost estimator
ĉ on alternatives can be used to estimate losses on experts given a recommendation matrix
E ∈ [0, 1]M,k:

l̂ = Eĉ (5.33)

Then, the properties of the (NIWE) estimator can be extended as follows.

Proposition 5.5.1. Let S =
∐L

ℓ=1 Sℓ be a similarity structure on A. Then, given a mixed strategy
w ∈ ∆(E) the expert cost estimator (5.33) with the (NIWE) estimator in (5.8) and a recommendation
matrix E ∈ [0, 1]M,k satisfies the following:

1. It is unbiased:
E
[
l̂e

]
= le for all e ∈ E . (5.34)

2. It enjoys the importance-weighted mean-square bound

E
[∑

e∈E
we l̂

2
e

]
≤ keff . (5.35)

This Proposition is proven in section 5.9. We are now in position to propose an algorithm
that learns to select experts. We call this algorithm the exponential weights with experts and
nesting (EWEN).

Formally, suppose that the learner associates to each expert e ∈ E a propensity score ze ∈ R
indicating their tendency – or propensity – to select it. Given this propensity score profile
z = (z1, . . . , zM ) ∈ RE , the logit choice (LC) rule is defined via the selection probabilities:

Qe(z) =
exp(ze)∑

e′∈E exp(ze′)
(LC)

This (LC) rule thus allows to define a strategy using a propensity score and with the
relation w = Q(z).

We are finally in a position to present the exponential weights with experts and nesting (EWEN)
algorithm in detail. Building on the original exponential weights blueprint (Littlestone and
Warmuth, 1994; Auer et al., 2002; Vovk, 1990), the main steps of the EWEN algorithm can be
summed up as follows:

1. For each stage t = 1, 2, . . . , the nature sets the recommendation Et and the learner
maintains and updates a propensity score profile zt ∈ RE .

2. At each level ℓ = 1, . . . , L, the learner selects an expert based on the logit choice rule
Q(γtzt) where γt ≥ 0 is the method’s learning rate and Q is given by (LC); the expert
then selects a class Sℓ.
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Algorithm 15: Exponential weights with experts and nesting (EWEN)
Require: set of experts E , attribute partitions S1 ≽ · · · ≽ SL, attribute structure S =

∐L
ℓ=1 Sℓ

Input: sequence of class costs rt ∈ [0, 1]S , t = 1, 2, . . . , learning rate γt ≥ 0

initialize z ← 0 ∈ RE , S0 = A;
for t = 1, 2, . . . do

get experts recommendations Et ; //expert advices
set strategy wt ; //expert strategy, (LC)

wt =

(
exp(γtze)∑

e′∈E exp(γtze′)

)
e∈E

for S ∈ Sℓ do
set r̂S ← 0 ; //baseline guess
set Et,S ←

∑
a≺S Et,a and Et,S′|S for S′ ◁ S using (5.31) ;

for ℓ = 1, . . . , L do
select class Sℓ ◁ Sℓ−1 ; //class choice

Sℓ ∼ uSℓ|Sℓ−1
= wtEt,Sℓ|Sℓ−1

get rSℓ,t ; //intra-class cost

set r̂Sℓ
← r̂Sℓ

+
rSℓ,t

uSℓ|Sℓ−1
· · ·uS1|S0

; //(NIWE)

set ĉa ←
∑

S∋a r̂S for all a ∈ A ; //costs on alternatives

set l̂← Etĉ ; //losses on experts

set z ← z − l̂ ; //update propensities

3. The experts incur rS,t for each class (Sℓ)ℓ=1,...,L; the learner constructs a model ĉt of the
cost vector ct of stage t via (NIWE) to build l̂t = Etĉt.

4. The learner updates their propensity score profile based on l̂t and the process repeats.

To view a pseudocode representation of the algorithm, refer to Algorithm 15. The process
of adjusting the learning rate γt will be discussed in the subsequent section, which is dedicated
to analyzing the EWEN algorithm.

5.5.3. Regret guarantees

Having reached this point, we can now articulate and examine the main regret guarantees
for the EWEN algorithm. They can be summarized as follows:

Theorem 5.5.1. Suppose that Algorithm 15 is run with a non-increasing learning rate γt > 0 against
a sequence of cost vectors lt ∈ [0, 1]E , t = 1, 2, . . . , as per (5.4). Then, for all q ∈ ∆(E), the learner
enjoys the regret bound

E[RT (q)] ≤
HE
γT+1

+
keff
2

T∑
t=1

γt (5.36)

with keff given by (5.13) and HE is defined as the depth over ∆(E) of the entropic regularizer hE in
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(5.12.1), i.e.,
HE = maxhE −minhE = logM (5.37)

In particular, if Algorithm 15 is run with γt =
√
logM/(2t · keff), we have

E[RT (q)] ≤ 2
√
keff logM · T . (5.38)

We provide all the details of the proof of this Theorem in section 5.9.

5.6. Discussion
In this section we discuss the regret bounds obtained for the NEW and EWEN algo-

rithms.

The first thing of note is the comparison to the corresponding bound for EXP3 and EXP4,
respectively of upper bounded by 2

√
k log k · T and 2

√
k logM · T . This shows our guarantees

differ by a factor of8
α =

√
k/keff , (5.39)

which, for reasons that become clear below, we call the price of affinity (PoAf).

Since the variabilities of the idiosyncratic losses within each attribute have been normal-
ized to 1 (recall the relevant discussion in section 5.3), Hölder’s inequality trivially gives
keff ≤ k, no matter the underlying similarity structure. Of course, if there are no similarities
to exploit (L = 1), we get keff = k, in which case the two bounds coincide (α = 1).

At the other extreme, suppose again we have a red bus / blue bus type of problem with,
say, k1 = 2 similarity classes, k2 = 100 alternatives per class, and a negligible intra-class loss
differential (Γ2 ≈ 0). In this case, EXP3 and EXP4 would have to wrestle with k = k1k2 = 200
alternatives, while NEW and EWEN would only need to discriminate between keff ≈ k1 = 2
alternatives, leading to an improvement by a factor of α ≈ 10 in terms of regret guarantee.
Thus, even though the red bus / blue bus paradox could entangle EXP3 or EXP4 and cause
the algorithm to accrue significant regret over time, this is no longer the case under the NEW
and EWEN methods; we also explore this issue numerically in section 5.7.

As another example, suppose that each non-terminal class in S has s children and the
variability of the idiosyncratic losses likewise scales down by a factor of s per attribute. In
this case, a straightforward calculation shows that keff scales as Θ(s), so the gain in efficiency
would be of the order of α =

√
k/keff = Θ(s(L−1)/2), i.e., polynomial in s and exponential in

L. This gain in performance can become especially pronounced when there is a very large
number of alternatives organized in categories and subcategories of geometrically decreasing
impact on the end cost of each alternative. We explore this issue in practical scenarios in
sections 5.7 and 5.9.

8Depending on the source, those bounds may differ up to a factor of
√
2, compare for example (Shalev-Shwartz,

2012, Corollary 4.2) and (Lattimore and Szepesvári, 2020, Theorem 11.2). This factor is due to the fact that regret
of EXP3 is usually stated for a known horizon T (which saves a factor of

√
2 relative to anytime algorithms).

Ceteris paribus, the bound (5.21) can be sharpened by the same factor, but we omit the details.
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Figure 5.2: Regret of EXP3 and NEW in the red bus / blue bus problem with different numbers of
buses.

0 2000 4000 6000 8000 10000
0

100

200

300

400

Re
gr

et

Env - Tree Structure - Regret
EXP3 - L 4, M 3
EXP3 - L 5, M 3
EXP3 - L 6, M 3

NEW - L 4, M 3
NEW - L 5, M 3
NEW - L 6, M 3

Figure 5.3: Regret of EXP3 and NEW in a tree environment with different values of levels L and
classes per level M

Finally, we should also note that the parameters of NEW have been tuned so as to facilitate
the comparison with EXP3. This tuning is calibrated for the case where S is fully symmetric,
i.e., all subcategories of a given attribute have the same number of children. Otherwise,
in full generality, the tuning of the algorithm’s uncertainty levels would boil down to a
transcendental equation involving the nested term H(µ1, . . . , µL) of (5.19). This can be done
efficiently offline via a line search, but since the result would be structure-dependent, we do
not undertake this analysis here.

5.7. Numerical experiments
In this section we present a series of numerical experiments designed to test the efficiency

of the NEW algorithm compared to EXP3. We use a synthetic environment where we
simulate nested similarity partitions with trees. While NEW exploits the similarity structure
by making forward/backward passes through the associated tree with its logit choice
rule (NLC), EXP3 is simply run over the leaves of the tree, i.e., A. All experiment details
(as well as additional results) are presented in section 5.9. For every setting, we report
the results of our experiments by plotting the average regret of each algorithm for 20
seeds of randomly drawn losses. The code to reproduce the experiments can be found at
https://github.com/criteo-research/Nested-Exponential-Weights.

Benefits in the red bus/blue bus problem. We consider here a variant of the red bus/blue
bus problem with N different buses (the original paradox has N = 2). In this experiment

https://github.com/criteo-research/Nested-Exponential-Weights


5.8. Discussions 178

0 2000 4000 6000 8000 10000
0

500

1000

1500

2000

2500

3000

3500

4000

Re
gr

et

Env - Tree Structure - Regret
EXP3 - L 2, M 50
EXP3 - L 2, M 100
EXP3 - L 2, M 200

NEW - L 2, M 50
NEW - L 2, M 100
NEW - L 2, M 200

Figure 5.4: Regret of EXP3 and NEW in a tree environment with different values of levels L and
classes per level M

(see illustration in figure 5.5, Appendix 5.9) we allow each bus to have non-zero intrinsic
losses and illustrate in figure 5.2 how both algorithms perform when N grows. We observe
there that for all configurations NEW achieves better regret than EXP3. While both methods
achieve sublinear regret, EXP3 requires far more steps to identify the best alternative as N
grows and suffers overall from worse regret while NEW achieves similar regret and does not
suffer as much from the number of irrelevant alternatives. We provide additional plots in
section 5.9 which show that NEW performs consistently better than EXP3 when there exists
a similarity structure allowing to efficiently update scores of classes that have very similar
losses.

Performance in general nested structures. In this setting we generate symmetric trees
and experiment with different values of number of levels L and number of child per nodes
M = |Sℓ| for ℓ = 1, . . . , L. Specifically, in figure 5.3 with a fixed M , we see that NEW obtains
better regret than EXP3 even when L increases. We provide variance plots for the experiments
that generated the same performance on the plots in 5.9 as well as additional visualisations.
Finally, in figure 5.4, we can see that for a shallow tree (L = 2) NEW performs always better
than EXP3, even for high values of M . Indeed, when the number of children per nodes
M increases, the tree loses its “factorized” structure which also affects NEW due to the
less "structured" tree. Thus, again, NEW performs consistently better than EXP3 when it is
possible to efficiently handle classes with similar losses.

Overall, our experiments confirm that a learning algorithm based on nested logit
choice can lead to significant benefits in problems with a high degree of similarity between
alternatives. This leaves open the question of whether a similar approach can be applied to
structures with non-nested attributes; we defer this question to future work.

5.8. Discussions
One limitation of the current framework is that the nested estimator (5.8) requires

knowledge of the intra-class cost increments rS for every chosen similarity class S ∋ at.
This is akin to the difference between the “full bandit” and “semi-bandit” setting that arises
in combinatorial bandits (Cesa-Bianchi and Lugosi, 2012). While relevant in a number of
application domains (e.g., in path-planning or when layering a structured security, such as
the tranches of a CDO), treating the fully unobservable case – possibly using an approach in
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the spirit of the hierarchical contextual analysis of Sen et al. (2021) – is an important open
question for future research.

Finally, it is also interesting to note that our analysis has been carried out in an arbitrarily
changing “adversarial” environment. In a stochastic environment, it would be fruitful to
consider other, contextual-based approaches such as LinUCB, KernelUCB and their variants
Lattimore and Szepesvári (2020). Ideally, one would like to employ a nested variant of the
“universal” algorithm of Zimmert and Seldin (2019) that attains optimal regret guarantees in
both stochastic and adversarial environments, but this question lies beyond the scope of our
work.
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5.9. Appendices
This appendix is organized as follows:

– Appendix 5.9: recapitulation of the notations
– Appendix 5.9: auxiliary bounds for the EWEN algorithm
– Appendix 5.9: regret analysis of the EWEN algorithm
– Appendix 5.9: analysis of the nested entropy and related bounds
– Appendix 5.9: auxiliary bounds for the NEW algorithm
– Appendix 5.9: regret analysis of the NEW algorithm
– Appendix 5.9: additional experiment details, discussions and results

5.10. Notations
In this appendix, we recall useful notations that are used throughout the paper.

– T is the horizon or number of rounds

Alternatives, experts, ground sets:
– a denotes a generic alternartive element (a.k.a. arm)
– A := {ai : i = 1, . . . , k} is the ground set of alternatives (a ∈ A)
– k is the number of elements in the set of alternatives (|A| = k)
– A is a generic subset of alternatives (A ⊂ A)
– E := {em : m = 1, . . . ,M} is the set of experts
– M is the number of experts in the set of experts (|E| =M )

Partitions, nested structure:
– S denotes the generic partition of the alternative set
– S is a class of the partition set
– ≼,≽ respectively defines relation for finer and coarser classes in the partition set:
{A} =: S0 ≽ S1 ≽ · · · ≽ SL := {{a} : a ∈ A} tower of nested similarity partitions (or
attributes)

– Sℓ partition that refer to as a similarity class
– S′ ≺ S means S′ ≺ S i.e. a class S ∈ Sℓ contains the class S′ ∈ Sk for some k > ℓ
– S′ ≺ S and k = ℓ+ 1,= means that S′ is a child of S and we will write “S′ ◁ S”
– S′ ∼ S′′ means S′ and S′′ are siblings if they are children of the same parent
– lineage of S is the unique directed pathA ≡ S0 ▷ S1 ▷ · · · ▷ Sℓ ≡ S fromA to any class
S ∈ S

Payoff structure:
– ΓS “intra-class” variability of costs rS′ ∈ [0,ΓS ] for all S′ ◁ S
– rS′ idiosyncratic cost increment, i.e. cS′ = cS + rS′ for all S′ ◁ S
– cS cost of the similarity class S ∈ S
– keff effective number of alternatives (arms). Could be strictly lower than k under some

assumption
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– α =
√
k/keff price of affinity (PoAf)

Learning with expert advice
– E ∈ [0, 1]M,k are the experts recommendations
– w ∈ ∆(E) mixed strategy to select experts by the learner
– q ∈ ∆(E) benchmark generic strategy
– l̂e estimator of le
– Q is a choice function that maps score vectors z ∈ RE to mixed strategies via the relation
w = Q(z)

– γ is the learning rate for the expert choice map Q
– hE is the total entropy on the expert set E
– HE is the depth of the previous entropy over the space ∆(E)

Designing an expert
– u ∈ ∆(A) mixed strategy to select arms by the learner
– p ∈ ∆(A) benchmark generic strategy
– ĉa estimator of ca
– P is a choice function that maps score vectors y ∈ RA to mixed strategies via the relation
u = P(y)

– η is the learning rate for the choice map P
– µℓ is the temperature parameter associated to each level ℓ ∈ {1, . . . , L}
– δ is the temperature difference
– h is the nested entropy
– H is the depth of the previous entropy over the space ∆(A)

5.11. Auxiliary bounds and results - EWEN algorithm
This part of the Appendix will serve to provide auxiliary bounds and results that will

enable the analysis of the exponential weights with experts and nesting algorithm later.

We will now prove the basic property of the NIWE estimator for experts, which we restate
below:

Proposition 5.5.1. Let S =
∐L

ℓ=1 Sℓ be a similarity structure on A. Then, given a mixed strategy
w ∈ ∆(E) the expert cost estimator (5.33) with the (NIWE) estimator in (5.8) and a recommendation
matrix E ∈ [0, 1]M,k satisfies the following:

1. It is unbiased:
E
[
l̂e

]
= le for all e ∈ E . (5.34)

2. It enjoys the importance-weighted mean-square bound

E
[∑

e∈E
we l̂

2
e

]
≤ keff . (5.35)

Before proving Proposition 5.5.1, we state and prove the following lemma that we will
help in this proof.
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Lemma 5.11.1. Let S =
∐L

ℓ=1 Sℓ be a similarity structure on A. Let w ∈ ∆(E), E ∈ [0, 1]M,k. Let
also ΓS ∈ [0, 1] for all ℓ ∈ {1, . . . , L}, it holds that:

M∑
m=1

wem

∑
Sℓ∈Sℓ

E

[(
l̂Sℓ
em

)2]
≤ kℓΓ̄2

ℓ , (5.11.1)

where for all ℓ ∈ {1, . . . , L},
Γ̄ℓ =

√
1

kℓ

∑
Sℓ∈Sℓ

Γ2
Sℓ
.

In particular, for all S ∈ S we have:
M∑

m=1

wem

∑
S∈S

E

[(
l̂Sem

)2]
≤

L∑
ℓ=1

kℓΓ̄
2
ℓ . (5.11.2)

Proof. Proof of lemma 5.11.1

Let ℓ ∈ {1, . . . , L}. First, we will note that in the similarity structure S , a node Sℓ is chosen
with probability:

uSℓ
= wESℓ

(5.11.3)
where ESℓ

is obtained from (5.30) on E. We then write:

M∑
m=1

wem

∑
Sℓ∈Sℓ

E

[(
l̂Sℓ
em

)2]
=

M∑
m=1

wem

∑
Sℓ∈Sℓ

E

(1{Sℓ = Ŝℓ
}
rSℓ

uSℓ

Em
Sℓ

)2


=
M∑

m=1

wem

∑
Sℓ∈Sℓ

E
[
1
{
Sℓ = Ŝℓ

}] r2Sℓ

(uSℓ
)2
(
Em

Sℓ

)2
=

M∑
m=1

wem

∑
Sℓ∈Sℓ

uSℓ

r2Sℓ

(uSℓ
)2
(
Em

Sℓ

)2︸ ︷︷ ︸
≤Em

Sℓ

≤
M∑

m=1

wem

∑
Sℓ∈Sℓ

r2Sℓ

uSℓ

Em
Sℓ

=
∑
Sℓ∈Sℓ

r2Sℓ︸︷︷︸
≤Γ2

Sℓ

∑M
m=1wemE

m
Sℓ

uSℓ︸ ︷︷ ︸
=1

≤
∑
Sℓ∈Sℓ

Γ2
Sℓ︸ ︷︷ ︸

kℓΓ̄
2
ℓ

= kℓΓ̄
2
ℓ .

This proves both (5.11.1) (directly) and (5.11.2) (summing on all levels ℓ ∈ {1, . . . , L} to browse
the whole similarity set S).
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We can now prove the proposition on the (NIWE) estimator for the expert costs.

Proof. Proof of proposition 5.5.1

Fix an expert e ∈ E . We will now prove both properties of the (NIWE) estimator.

Part 1. Fix some S ∈ S with attrS = ℓ ∈ {1, . . . , L} and lineage A ≡ S0 ▷ S1 ▷ · · · ▷ Sℓ ≡ S.

We begin by showing that the estimator (NIWE) is unbiased for the idiosyncratic loss
term r̂S . Indeed, we have:

E[r̂S ] = E

[
1
{
Sℓ = Ŝℓ, . . . , S1 = Ŝ1

}
uSℓ|Sℓ−1

· · ·uS2|S1
uS1

rSℓ

]
= E

[
1
{
S = Ŝ

}
uS

rS

]
# Rewriting (NIWE)

=
rS
uS

E
[
1
{
S = Ŝ

}]
︸ ︷︷ ︸

uS

= rS . (5.11.4)

This readily shows that the cost estimator in (5.8) then verifies E[ĉa] = ca by summation
and then E

[
l̂e

]
= le by linearity of the expectation.

Part 2. We will now proceed to upper bound the weighted sum on the squarred estimator.

Recalling the increment loss decomposition in (5.8), the cost for an expert em ∈ E with
index m ∈ {1, . . .M} then writes:

l̂em = ĉEm

=
∑
a∈A

ĉaE
m
a (5.11.5)

=
∑
a∈A

∑
S∋a

r̂SE
m
a (5.11.6)

=
∑
S∈S

r̂SE
m
S (5.11.7)

where the last expression is given using the definition of ES in (5.30). Thus, we can
reorganize the sum as:

l̂em =
∑
S∈S

l̂Sem .

where for m ∈ {1, . . . ,M} and S, S′ ∈ S such that S′ ▷ S we define l̂Sem , the expert
increment cost related to S, as:

l̂Sem = r̂SE
m
S .

Now, we aim at upper bounding E
[∑M

m=1wem(l̂em)
2
]
. Using (5.11.7) we decompose

this quantity as follows:
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E

[
M∑

m=1

wem(l̂em)
2

]
=

M∑
m=1

wem E
[
(l̂em)

2
]

=
M∑

m=1

wem E

(∑
S∈S

l̂Sem

)2
 (5.11.8)

For a given value of m ∈ {1, . . . ,M}, we can decompose (
∑

S∈S l̂
S
em)

2 as follows:(∑
S∈S

l̂Sem

)2

=
∑
S∈S

(
l̂Sem

)2
+ 2

∑
S′∈S

∑
S≻S′

l̂Sem l̂
S′
em . (5.11.9)

In order to tightly bound the right-hand side of (5.11.9), we use the lemma 5.11.1.
Indeed, combining (5.11.8) and (5.11.9) yields:

E

[
M∑

m=1

wem(l̂em)
2

]
=

M∑
m=1

wem

∑
S∈S

E

[(
l̂Sem

)2]
︸ ︷︷ ︸

(1)

+2
M∑

m=1

wem

∑
S′∈S

∑
S≻S′

E
[
l̂Sem l̂

S′
em

]
︸ ︷︷ ︸

(2)

.

(5.11.10)

lemma 5.11.1 directly enables to bound term (1) as:

M∑
m=1

wem

∑
S∈S

E

[(
l̂Sem

)2]
≤

L∑
ℓ=1

kℓ
(
Γ̄ℓ

)2
. (5.11.11)

Now we rewrite term (2) by making an explicit sum on the levels:

(2) = 2
M∑

m=1

wem

∑
S′∈S

∑
S≻S′

uS′ E
[
l̂Sem l̂

S′
em

]
=

M∑
m=1

wem

∑
1≤ℓ<ℓ′≤L

∑
Sℓ∈Sℓ

Sℓ′≺ℓ′Sℓ

E
[(

2l̂Sℓ
em l̂

Sℓ′
em

)]
.

(5.11.12)
Let {εℓ,ℓ′}1≤ℓ′<ℓ≤L be any fixed sequence of positive numbers. For any fixed expert em,
any ℓ, ℓ′ ∈ {1, . . . , L} and any Sℓ ∈ Sℓ and Sℓ′ ∈ Sℓ′ , the Peter-Paul inequality yields:

2l̂Sℓ
em l̂

Sℓ′
em ≤

1

εℓ,ℓ′
(l̂Sℓ
em)

2 + εℓ,ℓ′(l̂
Sℓ′
em )2. (5.11.13)
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Injecting (5.11.13) in (5.11.12) enables to proceed with the following series of derivations:

(2) ≤
M∑

m=1

wem

∑
1≤ℓ<ℓ′≤L

∑
Sℓ∈Sℓ

Sℓ′≺ℓ′Sℓ

(
1

εℓ,ℓ′
E
[
(l̂Sℓ
em)

2
]
+ εℓ,ℓ′ E

[
(l̂
Sℓ′
em )2

])

≤
M∑

m=1

wem

∑
1≤ℓ<ℓ′≤L

∑
Sℓ∈Sℓ

Sℓ′≺ℓ′Sℓ

1

εℓ,ℓ′
E
[
(l̂Sℓ
em)

2
]
+

M∑
m=1

wem

∑
1≤ℓ<ℓ′≤L

∑
Sℓ∈Sℓ

Sℓ′≺ℓ′Sℓ

εℓ,ℓ′ E
[
(l̂
Sℓ′
em )2

]

=
∑

1≤ℓ<ℓ′≤L

1

εℓ,ℓ′

M∑
m=1

wem

∑
Sℓ∈Sℓ

E
[
(l̂Sℓ
em)

2
]

︸ ︷︷ ︸
≤kℓ(Γ̄ℓ)2 (by lemma 5.11.1)

+
∑

1≤ℓ<ℓ′≤L

εℓ,ℓ′
M∑

m=1

wem

∑
Sℓ′∈Sℓ′

E
[
(l̂
Sℓ′
em )2

]
︸ ︷︷ ︸
≤kℓ′ (Γ̄ℓ′ )

2 (by lemma 5.11.1)

≤
∑

1≤ℓ<ℓ′≤L

(
1

εℓ,ℓ′
kℓ(Γ̄ℓ)

2 + εℓ,ℓ′kℓ′(Γ̄ℓ′)
2

)
. (5.11.14)

Now, injecting (5.11.11) and (5.11.14) in (5.11.10) gives:

E

[
M∑

m=1

wem(l̂
m)2

]
≤

L∑
ℓ=1

kℓ
(
Γ̄ℓ

)2
+

∑
1≤ℓ<ℓ′≤L

(
1

εℓ,ℓ′
kℓ(Γ̄ℓ)

2 + εℓ,ℓ′kℓ′(Γ̄ℓ′)
2

)
. (5.11.15)

For all ℓ, ℓ′, choosing εℓ,ℓ′ =
√

kℓ(Γ̄ℓ)2

kℓ′ (Γ̄ℓ′ )
2 in (5.11.15) yields:

E

[
M∑

m=1

wem(l̂
m)2

]
≤

L∑
ℓ=1

kℓ(Γ̄ℓ)
2 + 2

∑
1≤ℓ<ℓ′≤L

√
kℓkℓ′Γ̄ℓΓ̄ℓ′

=
L∑

ℓ=1

(√
kℓΓ̄ℓ

)2
+ 2

∑
1≤ℓ<ℓ′≤L

(√
kℓΓ̄ℓ

)(√
kℓ′Γ̄ℓ′

)

=

(
L∑

ℓ=1

√
kℓΓ̄ℓ

)2

. (5.11.16)

Which concludes the proof.

5.12. Regret analysis of the EWEN algorithm
At the core of our analysis lies a “template inequality”, that will first require an energy

function measuring the disparity between a benchmark strategy w ∈ ∆(E) and a propensity
score profile z ∈ RE . We therefore introduce hE : ∆(E)→ R as the total entropy function

hE(w) =
∑
e∈E

we logwe, for w ∈ ∆(E), (5.12.1)



5.12. Regret analysis of the EWEN algorithm 186

and let
h∗E(z) = max

w∈∆(E)
{⟨z, w⟩ − hE(w)}, for z ∈ RE , (5.12.2)

denote the convex conjugate of hE .

The Fenchel coupling between w ∈ ∆(E) and z ∈ RE is then defined as

FE(w, z) = hE(w) + h∗E(z)− ⟨z, w⟩ for all w ∈ ∆(E), z ∈ RE , (5.12.3)

and we have the following first result:

Proposition 5.12.1. Let E be an expert set. Then:

1. The Fenchel coupling (5.12.3) is positive-definite, i.e.,

FE(w, z) ≥ 0 for all w ∈ ∆(E) and all z ∈ RE , (5.12.4)

with equality if and only if w is given by (LC), i.e., if and only if w = Q(z).

2. For all w ∈ E , we have

FE(w, 0) = hE(w) + h∗E(0) = hE(w)−minhE (5.12.5)

where minhE ≡ minw′∈∆(E) hE(w
′) denotes the minimum of hE over ∆(E).

Proof. To show our first claim we rewrite the definition of convex conjugate h∗E : for any z ∈ RE

we have
h∗E(z) = max

w∈∆(E)
{⟨z, w⟩ − hE(w)}.

This straightforwardly implies that for any w ∈ ∆(E), z ∈ RE ,

h∗E(z) ≥ ⟨z, w⟩ − hE(w),
and therefore that

FE(w, z) = hE(w) + h∗E(z)− ⟨z, w⟩ ≥ 0.

Moreover, we classically show using Jensen’s inequality that for a fixed z ∈ RE and any
w ∈ ∆(E),

⟨z, w⟩ − hE(w) ≤ ⟨z,Q(z)⟩ − hE(Q(z)),

where Q(z) = exp(ze)/
(∑

e′∈E exp(ze′)
)

is the logit choice presented in (LC). The fact that
the equality happens only when w = Q(z) comes from the strict concavity of the logarithm
function.

As for our second claim, simply note that

h∗E(0) = max
w∈∆(E)

{⟨0, w⟩ − hE(w)} = − min
w∈∆(E)

hE(w)

and set z ← 0 in the definition (5.12.3) of the Fenchel coupling.
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We next state a property that will help us for our regret analysis by exhibiting the
dependency of the convex conjugate h∗E on the variance of the importance weighted estima-
tors.

Proposition 5.12.2. For z ∈ RE and l ∈ [0,+∞)E , we have:

h∗E(z − l)− h∗(z) ≤ −⟨Q(z), l⟩+ 1

2

∑
e∈E

Qe(z)l
2
e . (5.12.6)

Proof. As shown in the proof of proposition 5.12.1, for any z ∈ RE we have that

FE(Q(z), z) = 0,

which directly implies that

h∗E(z) = ⟨z,Q(z)⟩ − hE(Q(z)).

Using the fact that Q(z) = exp(ze)/
(∑

e′∈E exp(ze′)
)
, a series of straightforward derivations

yields

h∗E(z) = log

(∑
e∈E

exp(ze)

)
.

Now this enables to write, for z ∈ RE and l ∈ [0,+∞)E :

h∗E(z − l) = log

(∑
e∈E

exp(ze − le)
)

= log

(∑
e∈E

exp(ze) exp(−le)
)

= log

∑
e∈E

exp(ze)∑
e′∈E exp(ze′)︸ ︷︷ ︸

=Qe(z)

exp(−le)
∑

e′∈E
exp(ze′)


= log

(∑
e′∈E

exp(ze′)
∑
e∈E

Qe(z) exp(−le)
)

= log
(∑

e′∈E
exp(ze′)

)
︸ ︷︷ ︸

=h∗
E(z)

+ log

(∑
e∈E

Qe(z) exp(−le)
)
,

which delivers the following equality

h∗E(z − l)− h∗E(z) = log

(∑
e∈E

Qe(z) exp(−le)
)
. (5.12.7)
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Finally we write

h∗E(z − l)− h∗E(z) = log

(∑
e∈E

Qe(z) exp(−le)
)

≤ log

(∑
e∈E

Qe(z)

(
1− le +

1

2
(le)

2

))

≤
∑
e∈E

Qe(z)

(
−le +

1

2
(le)

2

)
= −

∑
e∈E

Qe(z)le +
1

2

∑
e∈E

Qe(z)(le)
2

= −⟨Q(z), l⟩+ 1

2

∑
e∈E

Qe(z)(le)
2

where we used that for any x ∈ [0,+∞) we have exp(x) ≤ 1− x+ x2/2 and log(1− x) ≤ x.
This is the wanted result.

With all this in hand, the specific energy function that we will use for our regret analysis
is the “rate-deflated” Fenchel coupling

Wt =
1

γt
FE(q, γtzt) (5.12.8)

where q ∈ ∆(E) is the regret comparator, γt is the algorithm’s learning rate at stage t, and zt is
the corresponding propensity score estimate. The learner’s mixed strategy at stage t, denoted
as wt, is determined by the expression wt = Q(γtzt). The energy, denoted as Wt, measures
the difference between wt and the desired strategy q (appropriately adjusted by the learning
rate of the method).

We now can state the following inequality on the difference of energies:

Proposition 5.12.3. For all q ∈ ∆(E) and all t = 1, 2, . . . , we have:

Wt+1 ≤Wt + ⟨l̂t, wt − q⟩+ (γ−1
t+1 − γ−1

t )[hE(q)−minhE ] +
1

γt
FE(wt, γtzt+1). (5.12.9)

Proof. By the definition of Wt, we have

Wt+1 −Wt =
1

γt+1
FE(q, γt+1zt+1)−

1

γt
FE(q, γtzt) =

1

γt+1
FE(q, γt+1zt+1)−

1

γt
FE(q, γtzt+1)

(5.12.10a)

+
1

γt
FE(q, γtzt+1)−

1

γt
FE(q, γtzt).

(5.12.10b)

We now proceed to upper-bound each of the two terms (5.12.10a) and (5.12.10b) separately.



5.12. Regret analysis of the EWEN algorithm 189

For the term (5.12.10a), the definition of the Fenchel coupling (5.12.3) readily yields:

(5.12.10a) =
[

1

γt+1
− 1

γt

]
hE(q) +

1

γt+1
h∗E(γt+1zt+1)−

1

γt
h∗E(γtzt+1). (5.12.11)

Inspired by a trick of Nesterov (2009), consider the function φ(γ) = γ−1[h∗E(γz) + minhE ].
Then, by proposition 5.13.2, letting w = Q(γz) and differentiating φ with respect to γ gives

φ′(γ) =
1

γ
⟨z,Q(γz)⟩ − 1

γ2
[h∗E(γz) + minhE ]

=
1

γ2
[⟨γz, w⟩ − h∗E(γz)−minhE ]

=
1

γ2
[hE(w)−minhE ] ≥ 0. (5.12.12)

Since γt+1 ≤ γt, the above shows that φ(γt) ≥ φ(γt+1). Accordingly, setting z ← zt+1 in
the definition of φ yields

1

γt+1
h∗E(γt+1zt+1)−

1

γt
h∗E(γtzt+1) ≤

[
1

γt
− 1

γt+1

]
minhE (5.12.13)

and hence
(5.12.10a) ≤ (γ−1

t+1 − γ−1
t )[hE(q)−minhE ]. (5.12.14)

Now, recall that:

zt+1 = zt − l̂t
wt+1 = argmax

w∈∆(E)
{⟨γt+1zt+1, w⟩ − hE(w)} (EWEN)

Then, after a straightforward rearrangement, the second term of (5.12.10) becomes

(5.12.10b) = 1

γt
[hE(q) + h∗E(γtzt+1)− γt⟨zt+1, q⟩]−

1

γt
[hE(q) + h∗E(γtzt)− γt⟨zt, q⟩]

=
1

γt

[
h∗E(γtzt+1)− h∗E(γtzt)− γt⟨l̂t, q⟩

]
# by (EWEN)

=
1

γt

[
h∗E(γtzt+1)− h∗E(γtzt)− γt⟨l̂t, wt⟩

]
+ ⟨l̂t, wt − q⟩ # isolate benchmark

=
1

γt

[
h∗E(γtzt+1)− ⟨γtzt, wt⟩+ hE(wt)− γt⟨l̂t, wt⟩

]
+ ⟨l̂t, wt − q⟩

# by proposition 5.13.2

=
1

γt
FE(ut, γtzt+1) + ⟨l̂t, wt − q⟩ (5.12.15)

Thus, combining the above with (5.12.14), we finally obtain

Wt+1 =Wt + (5.12.10a) + (5.12.10b)

≤Wt + (γ−1
t+1 − γ−1

t )[hE(q)−minhE ] + ⟨l̂t, wt − q⟩+
1

γt
FE(wt, γtzt+1) (5.12.16)

and our proof is complete.
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We are now in a position to state and prove the template inequality that provides the
scaffolding for our regret bounds:

Proposition 5.12.4. The EWEN algorithm enjoys the bound

E[RT (q)] ≤
HE
γT+1

+

T∑
t=1

E[FE(wt, γtzt+1)]

γt
. (5.12.17)

Proof. Let Zt = l̂t − Evt denote the error in the learner’s estimation of the t-th stage payoff
vector vt. Then, by substituting in proposition 5.12.3 and rearranging, we readily get:

⟨Evt, q − wt⟩ ≤Wt −Wt+1 + ⟨Zt, wt − q⟩+
(
γ−1
t+1 − γ−1

t

)
[hE(q)−minhE ] + γtFE(q, γtzt+1)

(5.12.18)
Thus, telescoping over t = 1, 2, . . . , T , we have

Regq(T ) ≤W1 −WT+1 +

(
1

γT+1
− 1

γ1

)
[hE(q)−minhE ] +

T∑
t=1

⟨Zt, wt − q⟩+
T∑
t=1

1

γt
FE(wt, γtzt+1)

≤ hE(q)−minhE
γT+1

+

T∑
t=1

⟨Zt, wt − q⟩+
T∑
t=1

1

γt
FE(wt, γtzt+1) (5.12.19)

where we used the fact that

1. Wt ≥ 0 for all t (a consequence of the first part of proposition 5.12.1); and that

2. W1 = γ−1
1 [hE(q) + h∗E(0)] = γ−1

1 [hE(q)−minhE ]

(from the second part of the same proposition). Our claim then follows by taking expectations
in (5.12.19) and noting that E[Zt | Ft] = 0 (by proposition 5.5.1).

Considering this, we can derive our primary regret bound by bounding the two terms
within the template inequality (5.12.9). The second term can be bounded using proposi-
tion 5.12.2 applied to results derived in section 5.9. On the other hand, the first term is easily
manageable and can be bounded as follows:

Proposition 5.12.5. For all q ∈ ∆(A) and all t = {1, 2, . . . }, we have:

FE(wt, γtzt+1) + γt⟨l̂t, wt⟩ = h∗E(γtzt + γt l̂t)− h∗E(γtzt). (5.12.20)

Proof. Let q ∈ ∆(A) and t ∈ 1, 2, . . . , we simply write:

FE(wt, γtzt+1) = hE(wt) + h∗E(γtzt+1)− γt⟨zt+1, wt⟩
= hE(wt) + h∗E(γtzt)− ⟨γtzt, wt⟩︸ ︷︷ ︸

=FE(wt,γtzt)

+h∗E(γtzt+1)− h∗E(γtzt)− γt⟨l̂t, wt⟩

= h∗E(γtzt + γt l̂t)− h∗E(zt)− γt⟨l̂t, wt⟩ # FE(wt, γtzt) = 0

and our assertion follows.
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We are finally in a position to prove our main result (which we restate below for
convenience):

Theorem 5.5.1. Suppose that Algorithm 15 is run with a non-increasing learning rate γt > 0 against
a sequence of cost vectors lt ∈ [0, 1]E , t = 1, 2, . . . , as per (5.4). Then, for all q ∈ ∆(E), the learner
enjoys the regret bound

E[RT (q)] ≤
HE
γT+1

+
keff
2

T∑
t=1

γt (5.36)

with keff given by (5.13) and HE is defined as the depth over ∆(E) of the entropic regularizer hE in
(5.12.1), i.e.,

HE = maxhE −minhE = logM (5.37)

In particular, if Algorithm 15 is run with γt =
√
logM/(2t · keff), we have

E[RT (q)] ≤ 2
√
keff logM · T . (5.38)

Proof. Injecting Eq. (5.12.20) in the result of proposition 5.12.4 and using proposition 5.12.2
and Eq. (5.35) of proposition 5.5.1 directly yields the pseudo-regret bound (5.36).

Then, we write:

H = maxhE −minhE = 0−
∑
e∈E

(1/M) log(1/M) = logM.

Thus, taking γt =
√

logM/(2t · keff) and substituting in (5.36) along with the latter finally
delivers

E[RT (q)] ≤ 2
√
keff logM · T , (5.12.21)

and our claim follows.

5.13. The nested entropy and its properties - NEW algorithm
Our aim in this appendix is to prove the basic properties of the series of (negative)

entropy functions that fuel the regret analysis of the nested exponential weights (NEW)
algorithm.

To begin with, given a similarity structure S on A and a sequence of uncertainty
parameters µ1 ≥ · · · ≥ µL > 0 (with µL+1 = 0 by convention), we define:

1. The conditional entropy of u ∈ ∆(A) relative to a target class S ∈ Sℓ:

h(u|S) = µℓ+1

∑
S′◁S

uS′ log
uS′

uS
= µℓ+1 uS

∑
S′◁S

uS′|S log uS′|S . (5.13.1)

2. The nested entropy of u ∈ ∆(A) relative to S ∈ Sℓ:

hS(u) =

L∑
k=ℓ

δk
∑

Sk≼kS

uSk
log uSk

(5.13.2)
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where δk = µk − µk+1 for all k = 1, . . . , L.

3. The restricted entropy of u ∈ ∆(A) relative to S ∈ Sℓ:

h|S(u) = hS(u) + χ∆(S)(u) =

{
hS(u) if u ∈ ∆(S),

∞ otherwise,
(5.13.3)

where χ∆(S) denotes the (convex) characteristic function of ∆(S), i.e., χ∆(S)(u) = 0
if u ∈ ∆(S) and χ∆(S)(u) = ∞ otherwise. [Obviously, h|S(u) = hS(u) whenever
u ∈ ∆(S).]

Remark 5.13.1. As per our standard conventions, we are treating S interchangeably as a subset of A
or as an element of S ; by analogy, to avoid notational inflation, we are also viewing ∆(S) as a subset
of ∆(A) – more precisely, a face thereof. Finally, in all cases, the functions h(u|S), hS(u) and h|S(u)
are assumed to take the value +∞ for u ∈ RA \∆(A). ¶

Remark 5.13.2. For posterity, we also note that the nested and restricted entropy functions (hS(u)
and h|S(u) respectively) are both convex – though not necessarily strictly convex – over ∆(A).
This is a consequence of the fact that each summand uS log uS in (5.13.2) is convex in u and that
δk = µk − µk+1 ≥ 0 for all k = 1, . . . , L. Of course, any two distributions u, u′ ∈ ∆(A) that assign
the same probabilities to elements of S but not otherwise have hS(u) = hS(u

′), so hS is not strictly
convex over ∆(A) if S ̸= A. However, since the function

∑
a∈S ua log ua is strictly convex over ∆(S),

it follows that hS – and hence h|S – is strictly convex over ∆(S). ¶

Our main goal in the sequel will be to prove the following fundamental properties of the
entropy functions defined above:

Proposition 5.13.1. For all S ∈ Sℓ, ℓ = 1, . . . , L, and for all u ∈ ∆(A), we have:

hS(u) =
∑
S′≼S

h(u|S′) + µℓ uS log uS . (5.13.4)

Consequently, for all u ∈ ∆(S), we have:

h|S(u) =
∑
S′≼S

h(u|S′). (5.13.5)

Proposition 5.13.2. For all S ∈ S and all y ∈ RA, we have:

1. The recursively defined propensity score yS of S as given by (5.17) can be expressed as

yS = max
u∈∆(S)

{⟨y, u⟩ − h|S(u)} (5.13.6)

2. The conditional probability of choosing a ∈ A given that S has already been selected under
(NLC) is given by

Pa|S(y) =
∂yS
∂ya

(5.13.7)

and the conditional probability vector P|S(y) = (Pa|S(y))a∈A solves the problem (5.13.6), viz.

P|S(y) = argmax
u∈∆(S)

{⟨y, u⟩ − h|S(u)} (5.13.8)
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These propositions will be the linchpin of the analysis to follow, so some remarks are in
order:

Remark 5.13.3. Note here that the maximum in (5.13.6) is taken over the restricted entropy function
h|S , not the nested entropy hS . This distinction will play a crucial role in the sequel; in particular,
since h|S is strictly convex over ∆(S), it implies that the argmax in (5.13.8) is a singleton. ¶

Remark 5.13.4. The first part of proposition 5.13.2 can be rephrased more concisely (but otherwise
equivalently) as

yS = h∗|S(y) (5.13.9)

where
h∗|S(y) = max

u∈∆(A)
{⟨y, u⟩ − h|S(u)} (5.13.10)

denotes the convex conjugate of h|S . This interpretation is conceptually important because it spells
out the precise functional dependence between the (primitive) propensity score profile y ∈ RA and
the propensity scores yS that are propagated to higher-tier similarity classes S ∈ S via the recursive
definition (5.17). In particular, this observation leads to the recursive rule

exp

(
h∗|S(y)

µℓ+1

)
=
∑
S′◁S

exp

(
h∗|S′(y)

µℓ+1

)
for all S ∈ Sℓ, ℓ = 0, 1, . . . , L− 1. (5.13.11)

We will we use this representation freely in the sequel. ¶

Remark 5.13.5. It is also worth noting that the propensity scores ySℓ
, Sℓ ∈ Sℓ, can also be seen as

primitives for the arborescence S ′ =∐ℓ
k=0 Sk obtained from S by excising all (proper) descendants

of Sℓ. Under this interpretation, the second part of proposition 5.13.2 readily gives the more general
expression

PS′|S(y) =
∂yS
∂yS′

for all S′ ≼ S, (5.13.12)

where, in the right-hand side, yS is to be construed as a function of yS′ , defined recursively via (5.17)
applied to the truncated arborescence S ′. Even though we will not need this specific result, it is
instructive to keep it in mind for the sequel.

The proofs of propositions 5.13.1 and 5.13.2 were made by Martin et al. (2022).

These properties of the nested entropy function (and its restricted variant) will play a key
role in deriving a suitable energy function for the nested exponential weights algorithm. We
make this precise in section 5.9 below.

5.14. Auxiliary bounds and results - NEW algorithm
Throughout this appendix, we assume the following primitives:

• A fixed sequence of real numbers µ1 ≥ µ2 ≥ · · · ≥ µL > 0; all entropy-related objects
will be defined relative to this sequence as per the previous section.

• A score vector y ∈ RA that defines inductively the score yS of any class S ∈ S using
(5.17), as well as the associated nested choice probability P(y) as per (NLC).
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• A vector of cost increments r = (rS)S∈S ∈ RS that defines an associated cost vector
c ∈ RA as per (5.4), viz.

ca =
∑
S∋a

rS for all a ∈ A. (5.14.1)

Moreover, for all c, y ∈ RA, we define the nested power sum function σc,y : S\SL → R which,
to any S ∈ S\SL, associates the real number

σc,y(S) =


∑
a◁S

Pa|S(y) exp(−ca/µL) if attrS = L− 1,∑
S′◁S

PS′|S(y)σc,y(S
′)

µℓ+2
µℓ+1 if attrS = ℓ < L− 1.

(5.14.2)

The following lemma links the increments of the conjugate entropy h∗ to the nested
power sum defined above:

Lemma 5.14.1. For all y ∈ RA, c ∈ RA, we have

h∗(y − c) = h∗(y) + µ1 log(σc,y(A)). (5.14.3)

Lemma 5.14.1 will be proved as a corollary of the more general result below:

Lemma 5.14.2. Fix some y ∈ RA and c ∈ RA. Then, for all Sℓ ∈ Sℓ, ℓ < L,we have

exp

(
h∗|Sℓ

(y − c)
µℓ+1

)
= exp

(
h∗|Sℓ

(y)

µℓ+1

)
σc,y(Sℓ) (5.14.4)

Proof of lemma 5.14.1. Simply invoke lemma 5.14.2 with S ← A.

The proof of lemma 5.14.2 was made by Martin et al. (2022).

The next lemma provides an upper bound for σc,y(A), which will in turn allow us to
derive a bound for the increment of h∗.

Lemma 5.14.3. For y ∈ RA and c ∈ [0,+∞)A, we have:

σc,y(A) ≤ 1− 1

µ1

[∑
a∈A

Pa(y)ca −
1

2µL

∑
a∈A

Pa(y)c
2
a

]
. (5.14.5)

As in the case of 5.14.1, lemma 5.14.3 will follow as a special case of the more general,
class-based result below:

Lemma 5.14.4. Fix some y ∈ RA and c ∈ RA
+. Then, for all Sℓ ∈ Sℓ, ℓ < L,we have

σc,y(Sℓ) ≤ 1− 1

µℓ+1

∑
a∈Sℓ

Pa|Sℓ
(y)ca −

1

2µL

∑
a∈Sℓ

Pa|Sℓ
(y)c2a

, (5.14.6)

Proof of lemma 5.14.3. Simply invoke lemma 5.14.4 with S ← A.

Proof of lemma 5.14.4. We proceed again by descending induction on ℓ = attrS.
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Base step. Fix some S ∈ S with attrS = L− 1. We then have:

σc,y(S) =
∑
S′◁S

PS′|S(y) exp(−
cS′

µL
)

≤
∑
S′◁S

PS′|S(y)(1−
cS′

µL
+

c2S′

2µ2L
) # e−x ≤ 1− x+ x2/2 for x ≥ 0

= 1− 1

µL

[∑
S′◁S

PS′|S(y)cS′ − 1

2µL

∑
S′◁S

PS′|S(y)c
2
S′

]

= 1− 1

µ(L−1)+1

[∑
a◁S

Pa|S(y)ca −
1

2µL

∑
a◁S

Pa|S(y)c
2
a

]
(5.14.7)

so the initialization of the induction process is complete.

Induction step. Fix some S ∈ S with attrS = ℓ− 1, ℓ < L, and suppose that (5.14.6) holds
at level ℓ. We then have:

σc,y(S) =
∑
S′◁S

PS′|S(y)σc,y(S
′)

µℓ+1
µℓ

≤
∑
S′◁S

PS′|S(y)

[
1 +

1

µℓ+1

(
−
∑
a◁S′

Pa|S′(y)ca +
1

2µL

∑
a◁S′

Pa|S′(y)c2a

)]µℓ+1
µℓ

# inductive hypothesis

≤
∑
S′◁S

PS′|S(y)

[
1 +

1

µℓ

(
−
∑
a◁S′

Pa|S′(y)ca +
1

2µL

∑
a◁S′

Pa|S′(y)c2a

)]
# (1 + x)β ≤ 1 + βx for β ≤ 1

= 1 +
1

µℓ

[
−
∑
S′◁S

∑
a◁S′

Pa|S′(y)PS′|S(y)ca +
1

2µL

∑
S′◁S

∑
a◁S′

Pa|S′(y)PS′|S(y)c
2
a

]
(5.14.8)

= 1 +
1

µ(ℓ−1)+1

[∑
a◁S

Pa|S(y)ca +
1

2µL

∑
a◁S

Pa|S(y)c
2
a

]
(5.14.9)

This being true for all S ∈ S s.t. attrS = ℓ− 1, the induction step and the proof of our
assertion are complete.

With all this in hand, we are now in a position to upper bound the increments of the
conjugate nested entropy h∗.

Proposition 5.14.1. For y ∈ RA and c ∈ [0,+∞)A, we have:

h∗(y − c)− h∗(y) ≤ −⟨P(y), c⟩+ 1

2µL

∑
a∈A

Pa(y)c
2
a. (5.14.10)

Proof. Using lemmas 5.14.1 and 5.14.3 and the concavity inequality log x ≤ x − 1 directly
delivers our assertion.
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Remark 5.14.1. It is useful to note that, given a cost increment vector r ∈ RS with associated aggregate
costs given by c ∈ RA we have:

⟨P(y), c⟩ =
∑
a∈A

Pa(y)ca

=
∑
a∈A

Pa(y)
∑
S∋a

rS

=
∑
a∈A

Pa(y)
∑
S∈S

rS 1a∈S

=
∑
S∈S

[∑
a∈A

Pa(y)1a∈S

]
rS

=
∑
S∈S

PS(y)rS .

We are finally in a position to prove the basic properties of the NIWE estimator, which
we restate below for convenience:

Proposition 5.3.1. Let S =
∐L

ℓ=1 Sℓ be a similarity structure on A. Then, given a mixed strategy
u ∈ ∆(A) and a vector of cost increments r ∈ RS as per (5.5), the estimator (NIWE) satisfies the
following:

1. It is unbiased:
E[r̂S ] = rS for all S ∈ S. (5.9)

2. It enjoys the importance-weighted mean-square bound

E
[
uS r̂

2
S

]
≤ Γ2

S for all S ∈ S. (5.10)

Accordingly, the loss estimator (5.8) is itself unbiased and enjoys the bound

E
[∑

a∈A
uaĉ

2
a

]
≤ keff (5.11)

Proof. Fix some S ∈ S with attrS = ℓ ∈ {1, . . . , L} and lineage A ≡ S0 ▷ S1 ▷ · · · ▷ Sℓ ≡ S.
We will now prove both properties of the (NIWE) estimator.

Part 1. We begin by showing that the estimator (NIWE) is unbiased. Indeed, we have:

E[r̂S ] = E

[
1
{
Sℓ = Ŝℓ, . . . , S1 = Ŝ1

}
uSℓ|Sℓ−1

· · ·uS2|S1
uS1

rSℓ

]
= E

[
1
{
S = Ŝ

}
uS

rS

]
# Rewriting (NIWE)

=
rS
uS

E
[
1
{
S = Ŝ

}]
︸ ︷︷ ︸

uS

= rS . (5.14.11)
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Part 2. We now turn to the proof of the importance-weighted mean-square bound of the
estimator (NIWE). In this case, for any S ∈ S, we have:

E
[
uS r̂

2
S

]
= uS E

[
r̂2S
]
= uS E

(1{S = Ŝ
}

uS
rSℓ

)2


= uS
r2Sℓ

u2S
E
[
1
{
S = Ŝ

}]
= r2Sℓ

# because E
[
1
{
S = Ŝ

}]
= uS

≤ Γ2
S . (5.14.12)

We are left to derive the bound for the aggregate cost estimator (5.8), viz.

ĉa =
∑
S∋a

r̂S . (5.14.13)

With this in mind, we can write:

∑
a∈A

uaĉ
2
a =

∑
a∈A

ua

(∑
S∋a

r̂S

)2

=
∑
a∈A

ua

∑
S∋a

r̂2S + 2
∑
S′∋a

∑
S≻S′

r̂S r̂S′


=
∑
a∈A

∑
S∈S

uar̂
2
S 1a∈S +2

∑
a∈A

∑
S′∈S

∑
S≻S′

uar̂S r̂S′ 1a∈S′

=
∑
S∈S

r̂2S
∑
a∈A

ua 1a∈S︸ ︷︷ ︸
uS

+2
∑
S′∈S

∑
S≻S′

r̂S r̂S′
∑
a∈A

ua 1a∈S′︸ ︷︷ ︸
uS′

=
∑
S∈S

uS r̂
2
S + 2

∑
S′∈S

∑
S≻S′

uS′ r̂S r̂S′ . (5.14.14)

Now, decomposing the above sums attribute-by-attribute and taking expectations in (5.14.14),
we get:

E

[∑
a∈A

uaĉ
2
a

]
=

L∑
ℓ=1

∑
Sℓ∈Sℓ

uSℓ
E
[
r̂2Sℓ

]
+ 2

∑
1≤ℓ<ℓ′≤L

∑
Sℓ∈Sℓ

Sℓ′≺ℓ′Sℓ

uSℓ′ E
[
r̂Sℓ
r̂Sℓ′

]
. (5.14.15)

The first term in (5.14.15) can simply be bounded using (5.14.12). Indeed:

L∑
ℓ=1

∑
Sℓ∈Sℓ

uSℓ
E
[
r̂2Sℓ

]
≤

L∑
ℓ=1

∑
Sℓ∈Sℓ

Γ2
Sℓ

=

L∑
ℓ=1

kℓΓ̄
2
ℓ . (5.14.16)

with Γ̄ℓ =
√

1
kℓ

∑
Sℓ∈Sℓ

Γ2
Sℓ

for any ℓ = 1, . . . , L.
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We now turn to the second term in (5.14.15). Let {εℓ,ℓ′}1≤ℓ′<ℓ≤L be any fixed sequence
of positive numbers. For any ℓ, ℓ′ ∈ {1, . . . , L} and any Sℓ ∈ Sℓ and Sℓ′ ∈ Sℓ′ , the Peter-Paul
inequality yields:

2r̂Sℓ′ r̂Sℓ
≤ 1

εℓ,ℓ′
r̂2Sℓ′

+ εℓ,ℓ′ r̂
2
Sℓ

(5.14.17)

Injecting (5.14.17) into the second term of (5.14.15) yields:

2
∑

1≤ℓ<ℓ′≤L

∑
Sℓ∈Sℓ

Sℓ′≺ℓ′Sℓ

uSℓ′ E
[
r̂Sℓ
r̂Sℓ′

]

≤
∑

1≤ℓ<ℓ′≤L

∑
Sℓ∈Sℓ

Sℓ′≺ℓ′Sℓ

uSℓ′

(
1

εℓ,ℓ′
E
[
r̂2Sℓ′

]
+ εℓ,ℓ′ E

[
r̂2Sℓ

])

=
∑

1≤ℓ<ℓ′≤L

1

εℓ,ℓ′

∑
Sℓ∈Sℓ

Sℓ′≺ℓ′Sℓ

uSℓ′ E
[
r̂2Sℓ′

]
+

∑
1≤ℓ<ℓ′≤L

εℓ,ℓ′
∑
Sℓ∈Sℓ

Sℓ′≺ℓ′Sℓ

uSℓ′ E
[
r̂2Sℓ

]

=
∑

1≤ℓ<ℓ′≤L

1

εℓ,ℓ′

∑
Sℓ∈Sℓ

Sℓ′≺ℓ′Sℓ

uSℓ′ E
[
r̂2Sℓ′

]
+

∑
1≤ℓ<ℓ′≤L

εℓ,ℓ′
∑
Sℓ∈Sℓ

E
[
r̂2Sℓ

] ∑
Sℓ′≺ℓ′Sℓ

uSℓ′︸ ︷︷ ︸
uSℓ

=
∑

1≤ℓ<ℓ′≤L

1

εℓ,ℓ′

∑
Sℓ′∈Sℓ′

uSℓ′ E
[
r̂2Sℓ′

]
+

∑
1≤ℓ<ℓ′≤L

εℓ,ℓ′
∑
Sℓ∈Sℓ

uSℓ
E
[
r̂2Sℓ

]
≤

∑
1≤ℓ<ℓ′≤L

1

εℓ,ℓ′

∑
Sℓ′∈Sℓ′

Γ2
Sℓ′

+
∑

1≤ℓ<ℓ′≤L

εℓ,ℓ′
∑
Sℓ∈Sℓ

Γ2
Sℓ

# by (5.14.12)

≤
∑

1≤ℓ<ℓ′≤L

1

εℓ,ℓ′
kℓ′Γ̄

2
ℓ′ +

∑
1≤ℓ<ℓ′≤L

εℓ,ℓ′kℓΓ̄
2
ℓ . (5.14.18)

Injecting (5.14.16) and (5.14.18) into (5.14.15) ensures that:

E
[∑

a∈A
uaĉ

2
a

]
≤
∑L

ℓ=1
kℓΓ̄

2
ℓ +

∑
1≤ℓ<ℓ′≤L

(
1

εℓ,ℓ′
kℓ′Γ̄

2
ℓ′ + εℓ,ℓ′kℓΓ̄

2
ℓ

)

holds for any sequence of positive numbers {εℓ,ℓ′}1≤ℓ′<ℓ≤L. As a result, taking εℓ,ℓ′ =
√

kℓ′
kℓ

Γ̄ℓ′
Γ̄ℓ

yields the tight bound

E
[∑

a∈A
uaĉ

2
a

]
≤
∑L

ℓ=1
kℓΓ̄

2
ℓ + 2

∑
1≤ℓ<ℓ′≤L

√
kℓ′Γ̄ℓ′

√
kℓΓ̄

2
ℓ =

(∑L

ℓ=1

√
kℓΓ̄ℓ

)2

, (5.14.19)

which proves our original assertion.
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5.15. Regret analysis of the NEW algorithm
As we mentioned in the main text, the principal component of our analysis is a recursive

inequality which, when telescoped over t = 1, 2, . . . , will yield the desired regret bound. To
establish this “template inequality”, we will also require an energy function measuring the
disparity between a benchmark strategy u ∈ ∆(A) and a propensity score profile y ∈ RA

as we did in section 5.9. To that end, similarly to the notions introduced in section 5.9, let
h : ∆(A)→ R denote the total nested entropy function

h(u) = hA(u) =
L∑

k=0

δk
∑

Sk∈Sk

uSk
log uSk

, u ∈ ∆(A), (5.15.1)

and let
h∗(y) = max

u∈∆(A)
{⟨y, u⟩ − h(u)}, y ∈ RA, (5.15.2)

denote the convex conjugate of h so, by proposition 5.13.2, we have

h∗(y) = yA and Pa(y) =
∂h∗

∂ya
for all y ∈ RA. (5.15.3)

The Fenchel coupling between u ∈ ∆(A) and y ∈ RA is then defined as

F (u, y) = h(u) + h∗(y)− ⟨y, u⟩ for all u ∈ ∆(A), y ∈ RA, (5.15.4)

and we have the following key result:

Proposition 5.15.1. Let S =
∐L

ℓ=0 Sℓ be a similarity structure on A with uncertainty parameters
µ1 ≥ · · · ≥ µL > 0. Then:

1. The Fenchel coupling (5.15.4) is positive-definite, i.e.,

F (u, y) ≥ 0 for all u ∈ ∆(A) and all y ∈ RA, (5.15.5)

with equality if and only if u is given by (NLC), i.e., if and only if u = P(y).

2. For all u ∈ A, we have

F (u, 0) = h(u) + h∗(0) = h(u)−minh (5.15.6)

where minh ≡ minu′∈∆(A) h(u
′) denotes the minimum of h over ∆(A).

Proof. Our first claim follows by setting S ← A in propositions 5.13.1 and 5.13.2 and noting
that hS = h|S when S = A: indeed, by Young’s inequality, we have h(u) + h∗(y)− ⟨y, u⟩ ≥ 0
with equality if and only if y ∈ ∂h(u), so the equality u = P(y) follows from (Martin et al.,
2022, Eq. A.37) applied to S ← A and the fact that Pa|A(y) = Pa(y). As for our second claim,
simply note that h∗(0) = maxu∈∆(A){⟨0, u⟩ − h(u)} = −minu∈∆(A) h(u) and set y ← 0 in the
definition (5.15.4) of the Fenchel coupling.
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As in section 5.9, he specific energy function we will utilize for our regret analysis is the
“rate-deflated” Fenchel coupling:

Wt =
1

ηt
F (p, ηtyt) (5.15.7)

where p ∈ ∆(A) is the genereic benchmark strategy, ηt is the algorithm’s learning rate at
stage t, and yt is the associated propensity score estimate. In words, since the mixed strategy
employed by the learner at stage t is ut = P(ηtyt), the energy Wt essentially measures the
disparity between ut and the target strategy p (suitably rescaled by the method’s learning
rate). We then have the following fundamental estimate:

Proposition 5.15.2. For all p ∈ ∆(A) and all t = 1, 2, . . . , we have:

Wt+1 ≤Wt + ⟨ĉt, ut − p⟩+ (η−1
t+1 − η−1

t )[h(p)−minh] +
1

ηt
F (ut, ηtyt+1). (5.15.8)

Proof. The proof follows the same line as the proof of proposition 5.12.3 in section 5.9.

Having reached that standpoint, we are now ready to reiterate the template inequality
that forms the framework for our regret bounds:

Proposition 5.4.1. The NEW algorithm enjoys the bound

E[RT (p)] ≤
H

ηT+1
+

T∑
t=1

E[F (ut, ηtyt+1)]

ηt
. (5.27)

Proof. Similarly, the proof follows the same line as the proof of proposition 5.12.4 in section 5.9.

In view of the above, our main regret bound follows by bounding the two terms in the
template inequality (5.15.8). The second term is by far the most difficult one to bound, and
is where section 5.9 comes in; the first term is easier to handle, and it can be bounded as
follows:

Lemma 5.15.1. Suppose that each class S ∈ Sℓ−1 has at most sℓ children, ℓ = 1, . . . , L. Then, for all
p ∈ ∆(A), we have

H ≤
L∑

ℓ=1

µℓ log sℓ with equality iff the tree is symmetric, (5.15.9)

H = µ log(k) if µ1 = µ2 = · · · = µL = µ. (5.15.10)

Proof. The proof was made by Martin et al. (2022).

Proposition 5.15.3. For all p ∈ ∆(A) and all t = {1, 2, . . . }, we have:

F (ut, ηtyt+1) + ηt⟨ĉt, ut⟩ = h∗(ηtyt + ηtĉt)− h∗(ηtyt). (5.15.11)
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Proof. Similarly, the proof follows the same steps as the proof of proposition 5.12.5 in
section 5.9.

At long last, we have reached the point where we can provide a proof for our main result.
For the sake of convenience, we restate the result below:

Theorem 5.4.1. Suppose that Algorithm 14 is run with a non-increasing learning rate ηt > 0
and uncertainty parameters µ1 ≥ · · · ≥ µL > 0 against a sequence of cost vectors ct ∈ [0, 1]A,
t = 1, 2, . . . , as per (5.4). Then, for all p ∈ ∆(A), the learner enjoys the regret bound

E[RT (p)] ≤
H

ηT+1
+
keff
2µL

T∑
t=1

ηt (5.19)

with keff given by (5.13) and H ≡ H(µ1, . . . , µL) defined by setting y = 0 in (5.17) and taking
H = yA, i.e.,

H = log

 ∑
S1◁S0

 ∑
S2◁S1

· · ·

 ∑
SL◁SL−1

1


µL

µL−1

· · ·


µ2
µ1


µ1

(5.20)

In particular, if Algorithm 14 is run with µ1 = · · · = µL =
√
keff/2 and ηt =

√
log k/(2t), we have

E[RT (p)] ≤ 2
√
keff log k · T . (5.21)

Proof. Injecting Eq. (5.15.11) in the result of proposition 5.4.1 and using proposition 5.14.1
and Eq. (5.11) of proposition 5.3.1 directly yields the pseudo-regret bound (5.19).

Finally, if we choose µ1 = · · · = µL =
√
keff/2, lemma 5.15.1 gives

H =
√
keff/2 log k. (5.15.12)

Thus, taking ηt =
√
log k/(2t) and substituting in (5.19) along with (5.15.12) finally delivers

E[RT (p)] ≤ 2
√
keff log k · T , (5.15.13)

and our claim follows.

5.16. Additional Experiment Details and Discussions
In this appendix we provide additional details on the experiments as well as further

discussions on the settings we presented. The code with the implementation of the algorithms
as well as the code to reproduce the figures will be open-sourced and is provided along with
the supplementary materials.

5.16.1. Experiment additional details

In the synthetic environment, at each level, the rewards are generated randomly according
for each class nodes, through uniform distributions of randomly generated means and fixed
bandwidth. From a level ℓ to the next ℓ+ 1, the rewards range are divided by a multiplicative
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factor Γℓ/Γℓ+1 = 10. The implemented method of NEW uses the reward based IW. Moreover,
no model selection was used in this experiment as no hyperparameter was tuned. Indeed,
a decaying rate of 1√

t
was used for the score updates for all methods, as is common in the

bandit literature (Lattimore and Szepesvári, 2020).

5.16.2. Blue Bus/ Red Bus environment

We detail in Figure 5.5 a graphical representation of such blue bus/red bus environment,
where many colors of the bus item build irrelevant alternatives. In this setting, with few arms,
we run the methods up to the horizon T = 1000. We provide in Figure 5.6 the average reward
of the two methods NEW and EXP3 with varying number of subclasses of the “bus”.

S0

red bus

car bus

car blue bus
a1 a2a0

...
ai

...

Figure 5.5: Diagram of the blue Bus/Red Bus environment.

While the NEW method ends up selecting the best alternative and having the lowest
regret, the EXP3 seems to pick wrong alternative in some experiments, and ends up having
higher regret and requiring more iterations to converge to higher average reward. In some of
our experiments over the multiple random runs, alternatives of very low sampling probability
that were sampled changed the score vector too brutally in the IPS estimator which seemed
to hurt the EXP3 method much more than the NEW algorithm.
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Figure 5.6: Regret and Average Reward of NEW and EXP3 on the Blue Bus/ Red Bus environment.

5.16.3. Tree structures

In this appendix we show additional results and visualisations for the second setting
presented in the main paper. We start with discussions on the depth parameter L and follow
with the breadth parameter related to the number of child per class M = |S|.
Influence of the depth parameter L In Figure 5.7 we show the influence of the depth
parameter with a fixed number of child per class. By making the tree deeper, we illustrate
the effect of knowing the nested structure compared to running the logit choice to the whole
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alternative set. As shown in both the regret and average reward plots, the NEW method
outperforms the EXP3 algorithm. While the NEW method also use an IPS estimator, it is less
prone to variance issues than the EXP3 method. Indeed, due to the nested structure and the
reward decay related to the ratio Γℓ+1/Γℓ, the NEW estimator end up not hurting the regret
by still selecting "right" parent classes.
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Figure 5.7: Regret and Average Reward of NEW and EXP3 on the synthetic environment with varying
number of levels L.

Influence of the number of child per class (wideness) M = |S| In this setting we fix the
number of levels L and vary the number of child per classes M . In Figure 5.8 we can see that
the NEW method outperforms the EXP3 in terms of regret and average reward. Interestingly,
we see that the gap between the two methods shrinks when the number of child per class
augments. This is because when the size of a class increase, the NEW method also end up
having less knowledge locally and end up having a large number of alternatives to choose
among.
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Figure 5.8: Regret and Average Reward of NEW and EXP3 on the synthetic environment with varying
number of child per class M = |S|.

5.16.4. A visualisation of the effects of NEW

In this appendix we want to show the effects of NEW through the simple setting where we
assume a nested structure with L = 4 and M = |S| = 3. We illustrate in Figure 5.9 the score
vectors of the NEW method along the optimal path in the tree (path which nodes have the
highest cumulated mean, i.e which generates the highest reward) along with the oracle means
of the child nodes. We can see that the algorithm takes advantage of the nested structure and
updates the scores vectors optimally with regards to the oracle means of all the nodes. The
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Figure 5.9: Histograms of the score vectors along the optimal path in the nested structure, with
visualisation of the mean value of the node.

NEW algorithm therefore estimates correctly the rewards of the environment.

Inversely we see in Figure 5.10 that the EXP3 method has suffered from variance issue
and selected a suboptimal alternative among the |S|L = 81 possible ones. The EXP3 did not
take advantage of the nested structure and therefore did not learn as correctly as the NEW
algorithm the reward values.
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Figure 5.10: Histogram of the score vector of the all alternatives, with a visualisation of the mean
value of all nodes.

5.16.5. Cases where both algorithms perform identically

In this appendix we merely show that the implementation of the NEW and EXP3 algorithm
match exactly and observe the same behavior when the number of levels L is set to 1. This
setting is where we have no knowledge of any nested structure, therefore both algorithms
perform identically in Figure 5.11.
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Figure 5.11: Regret and Average Reward of NEW and EXP3 on the synthetic environment where
L = 1.

5.16.6. Variance plots for the synthetic experiments

We discuss here the variance of the regret at the final timestep T = 10000. Indeed, as
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Figure 5.12: Regret distribution at the final stepsize T = 1000 for the Red Bus/Blue Bus environment.
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Figure 5.13: Regret distribution at the final stepsize T = 10000 when varying the depth parameter L.

shown on Figure 5.6 for the NEW algorithm , on Figure 5.7 for both algorithms EXP3 and
NEW, and on Figure 5.8 for EXP3, some of the plots do no exhibit the monotonicity one
would have expected when increasing the number of arms through L or M , and are even
overlapping on the regret plot. This can be explained on Figures 5.12 for the Red Bus/Blue
Bus environment, and in Figures 5.13 and 5.14 respectively for depth and wideness tree
experiments. Those plots show the variances (across the 20 random seeds) of the final regret
for both methods at the final step-size. In Figure 5.13 we see that the EXP3 arms have similar
mean values with large variances, which explains why they are overlapping on the plot in
Figure 5.3. In Figure 5.14 when varying M we can also have a closer look on how NEW
outperforms EXP3 and how the close values of NEW regrets through different M can be
explained by their high variance.

5.16.7. Reproducibility

We provide code for reproducibility of our experiments and plots, in addition to a more
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Figure 5.14: Regret distribution at the final stepsize T = 10000 when varying the wideness parameter
M .

general implementation of both the NEW algorithm and EXP3 baseline. All experiments
were run on a Mac book pro laptop, with 1 processor of 6 cores @2.6GHz (6-Core Intel Core
i7).



6
Concluding Remarks and Perspectives

This thesis brought various contributions with regard to sequential learning where offline
and online settings where subsequently considered. In this work I focused on the effectiveness
and the efficiency of those learning methods and their statistical guarantees.

First, in Chapter 2, we addressed the challenge of learning counterfactual stochastic
policies from real-world data with continuous actions. This posed obstacles in modelization,
optimization, and evaluation within the CRM pipeline. To overcome these challenges, we
brought contributions in a novel parametrization technique based on joint kernel embedding
of contexts and actions, delivering competitive performance. We highlighted the importance
of optimization using techniques like soft-clipping and proximal point methods, along
with providing statistical guarantees for our estimator and policy class. Additionally, we
introduced an offline evaluation protocol and a large-scale dataset, the first of its kind with
real-world logged propensities and continuous actions.

Second, we presented a novel sequential deployment of incrementally optimized CRM
policies in Chapter 3 called sequential counterfactual risk minimization (SCRM). Our proposed
method introduced a novel counterfactual estimator to enhance variance control in excess
risk bounds. By applying these excess risk guarantees sequentially under a weak error bound
assumption, we achieved accelerated rates comparable to existing acceleration methods.
Notably, our method outperforms CRM in practical applications and is particularly well-
suited for this sequential setting. (SCRM) is a significant step towards the realistic learning
setting that companies such as Criteo might consider in applications which sits in-between
offline and sequential learning.

Third, when online learning is possible, we investigated solutions for the scalability
issues of the kernel methods in the optimistic learning algorithms in Chapter 4, where we
introduced a method for contextual kernel Upper Confidence Bound (UCB) algorithms
in large-scale problems. The proposed EK-UCB algorithm exhibits a space complexity of
O(Tdeff) and a time complexity of O(CTd2eff), representing a significant improvement over
the standard contextual kernel UCB approach. Notably, while previous efficient Gaussian
process algorithms have enabled scalability in learning problems within non-contextual and
discrete action environments, we demonstrated the crucial role of incremental projection
updates in achieving efficient approximations within the joint context-action space. This
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resulted in equivalent regret guarantees at a lower computational cost.

Eventually, note that all previous settings considered stochastic environments, while the
arbitrarily changing "adversarial" environment requires less assumptions and might be more
suitable for some applications. In the presence of side knowledge on an outcome similarity
structure where observed losses also have inherent similarities, we proposed in Chapter 5
an approach that leveraged layered exploration of the set of alternatives based on a nested
selection method. This allowed us to improved the regret bounds and benefits were seen in
practical implementations of the exponential weights algorithms.

Perspectives Interestingly, when working on the CoCoA large-scale dataset we measured
the difficulty to learn policies and assess their statistical significance in real-world settings,
even with variance reduction estimators. For future research a promising venue would
be to enhance policies as in offline RL (Schulman et al., 2017, 2015)) with distributionally
robust methods that constraint the optimized policy to keep closer to the logging and make
incremental learning steps. In such a case, incorporating sequential deployments in a CRM
procedure would be the most natural learning setting for incremental learning steps, which is
what we started with Chapter 3 with (SCRM).

It is important to mention that in our analysis of excess risk bounds in (SCRM) we
employed a theoretical algorithm that utilizes geometric sample sizes to discard previous
samples, thus avoiding the introduction of dependencies. However, in practice using all past
samples has been found to be effective as well and developing guarantees for this scenario
would be an interesting area for future research, for example with maximal inequality tools
used in (Bibaut et al., 2021a). Furthermore, similarly to online settings that involve an
exploration-exploitation tradeoff, exploring in (SCRM) the application of the optimism in
the face of uncertainty (OFUL) principle (Abbasi-yadkori et al., 2011) holds promise as a
potential avenue for future investigation. Indeed, algorithms in sequential learning that use
this optimistic principle prove to be effective in practice.

For the computational efficiency of the kernel contextual bandits, it is worth mentioning
that the batching strategy employed by BBKB (Calandriello et al., 2020) can offer benefits
even when considering the incremental updates that we used in Chapter 4. This observation
presents an intriguing area for future exploration and investigation. Another relevant
question is whether it is possible to develop algorithms that not only achieve improved
regret guarantees comparable to the elimination algorithms (Valko et al., 2013; Lattimore and
Szepesvári, 2020) in the context of finite actions but also provide computational efficiency
gains similar to those achieved in our work. In the case where such elimination algorithms
would be effective in practice, it would bring significant advancements in the field.

As for the adversarial muti-armed bandit we considered in Chapter 5, a limitation of the
framework we proposed is that the nested estimator requires knowledge of the intra-class
cost increments; that can be compared to the distinction between the "full bandit" and
"semi-bandit" settings found in combinatorial bandits (Cesa-Bianchi and Lugosi, 2012). While
this limitation is relevant in various application domains (e.g., path-planning), addressing
the fully unobservable case, possibly by adopting an approach similar to the hierarchical
contextual analysis proposed by Sen et al. (2021), remains an important open question for
future research.
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